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Introduction
Problem Statement

There is a lack of 3D LiDAR object classification models that work with multiple
LiDAR data formats, are scalable in terms of the data size, number of object classes, and
the ease of adding features, and are efficient in real-time applications.

Intended Users and Uses

The outcomes of this project are prepared to cater to a diverse spectrum of
industries, ranging from research specializing in visual classification to systems looking to
gather data while allowing people's personal identifying information. It extends its impact
to individuals exploring innovative applications of obstacle detection and avoidance, which
has many applications in the field of robotics for path planning. Moreover, LiDAR object
detection helps derive the number of objects, for example, the number of trees in a forest
or students in a classroom, while needing to be more precise to grab identification
features. The project's ripple effect extends to improving autonomous vehicles for
identifying obstacles and avoiding collisions. There are also many drone applications for
surveying land and identifying key objects for which this project is worthwhile. In addition
to practical applications, there are plenty of benefits for research and academia that can
result from the completion of this project. The area of LiDAR systems has needed more
research into the application of this spreading technology. This project allows more
individuals to explore applications in autonomous vehicles, drones, or other areas that
could benefit from LiDAR classification systems.



Work in Context of Related Products and Literature

Despite the limited research, we found a few relevant papers for our project. One of
these, Deep 3D Object Detection Networks Using LiDAR Data: A Review was written in
2019, explores machine vision and how it interprets the environment, which is crucial for
decision-making. Similar to what we are trying to do, they also say that object detection, a
cornerstone of machine vision, extends to 3D, offering detailed size and spatial data and
enhancing detection systems' versatility. LiDAR, with its precise spatial capture and
immunity to lighting conditions, emerges as a promising sensor for 3D detection. Their
paper mainly focuses on the steps required in 3D object detection that are analyzed from a
fundamental standpoint in this study, covering target definition, input LiDAR point cloud
data, network structures, output encodings, and evaluation metrics. It also provides an
extensive overview of current developments in deep 3D LiDAR object detection networks,
encompassing 52 papers that discuss essential technologies.

Another paper we referenced was about BirdNet, which uses the KITTI Object
Detection Benchmark because it is an innovative method for assessing performance on 2D
detection, bird's eye view (BEV), and 3D detection tasks presented in the study. The two
notable contributions are a novel concept for BEV cell encoding independent of distance
and LiDAR device resolution and a 3D detection framework that uses BEV images as input
to identify automobiles, bicycles, and pedestrians. Additionally, Livox has a repository on
GitHub, Livox Detection-simu, intending to be a real-time identification model. It does,
noticeably, have several issues and is no longer maintained. A final similar project is a 3d
detection and tracking view using the KITTI dataset and another Waymo dataset. The
paper's main contributions are a novel cell encoding proposal for BEV invariant to distance
and differences in LiDAR device resolution and a 3D detection framework that identifies
cars, cyclists, and pedestrians using a BEV image as input.



Revised Design
Requirements

Functional requirements:
● (1) Development of an object classification training model for LiDAR sensors

○ Object detection/classification accuracy of >75% within 500ms
● (2) Creation of a labeled dataset suitable for object detection

○ Ensure comprehensive labeling of multiple different object types
● (3) Compatibility assurance with various LiDAR sensor data types

○ Works with at least 3 data types, including: .lvx, .ply, .las

Resource requirements:
● (4) Sufficient computational resources for storing the collected data, training, and

testing the model
○ 8 GTX 1080 Ti GPUs

■ Focus on ensuring high-quality data processing and model training
within a reasonable training time

○ 16GB RAM required
■ Requires a minimum of 16GB RAM for efficient operation and

reasonable refresh rates
■ Aim to facilitate smooth data processing and real-time model

responses

UI requirements:
● (5) Published dataset is hosted on a service in an easily accessible/navigable

manner
○ Host the dataset with an intuitive README or description
○ Ensure that users can easily retrieve the dataset

Performance requirements:
● (6) Classify objects with >75% accuracy
● (7) Identification within a 500 ms response time

Legal requirements:
● (8) Adherence to data privacy and ethical standards

○ Safeguard and maintain the confidentiality of personally identifiable
information

● (9) Restrictions on collecting sensitive information such as personally identifiable
information and compliance with IEEE standards



Maintainability requirements:
● (10) Necessitates ongoing model maintenance and documentation for future

reference and collaboration
● (11) Scalability and adaptability to work with wider ranges of objects and larger

datasets
● (12) Thorough documentation for ease of understanding

Testing requirements:
● (13) Rigorous testing and validation of the object classification system is also

essential. Testing is covered more in the testing-specific section of the document

Engineering Standards
● ISO/IEC 20889�2018 - Preserve personally identifiable information
● IEEE 1588-2008 (PTPv2), PPS (Pulse Per Second)
● IEEE 1451 family of standards

○ These standards collectively create a framework for smart transducers and
sensors.

● Loose Agile development process
○ Utilized Agile way of thinking for split teams and weekly progress

assessments

Security Concerns and Countermeasures

Our LiDAR detection system will offer significant benefits in several areas, such as
autonomous driving and 3D mapping, however, there are security concerns to be
addressed for our project. Data privacy and ethical standards are at the forefront of issues
that must be accounted for. LiDAR systems can collect vast data about the environment
and the individuals within it. There must be some safeguards to maintain the
confidentiality of individuals’ personally identifiable information that may be captured
during LiDAR operations. This means there should be restrictions on collecting sensitive
information, such as facial details and license plates, to prevent misuse of said private
data. Our project complied with standards set by the IEEE, so we can be sure that our
LiDAR usage was responsible and ethical. These countermeasures can help mitigate the
security and privacy risks that arise from our LiDAR detection, meaning our benefits can
be accomplished without compromising security and privacy. Specifically, our
data-collecting procedures did not include positions close enough to vehicles or people to
record individually identifying features. We also collected data in public spaces outside the
campus library and along sidewalks throughout campus.



Design Evolution

Our design has changed noticeably from the previous semester. The complete
design can be found in the Implementation Details section. The main changes to our
design begin in our first section which includes the data collection process of our design.
We discovered that OpenPCDet does not require the syncing of camera data to the frames
of the LiDAR, so we are now using our webcam data solely for helping to validate the
LiDAR point clouds visually, especially during the labeling process using the MATLAB
LiDAR Labeling tool. In the data processing section of our design, the details of how we
pre-processed our data have changed. We are now using the Livox Robot Operating
System Driver to convert between different data types, mainly .lvx to rosbag.

To achieve this, we created an Ubuntu 18.04.6 VM using Virtualbox to host the Livox
ROS Driver repository and installation of ROS that matches it. We then utilized the
conversion feature of the driver to transform our .lvx files to .bag files. This is done to
allow for our following design change, which is using a semi-manual tool in MATLAB to
label our data, to work. We ran into issues with the Point Pillar network and had to fall
back on drawing frames manually at the start and end of objects and use an interpolation
tool to draw the intermediate frames. A final change is being completely sure that we are
using the OpenPCDet model as our project's base. Contributing to an existing model
allows us to progress faster without creating an entire model ourselves. Also, it provides a
way for more people to be able to use our contributions by attaching them to a preexisting
and relatively well known model.



Implementation Details
Detailed Design

Figure 1� Final design iteration of the system.

Our design has gone through several iterations to reach its current point. The
design showcases the process from start to finish of generating a successful result and
testing it to ensure it is within our specifications. The final design, and almost every
design iteration before this, has been split into two main sections. The above diagram
shows the data flow through each of the varying steps of our project’s process.

The first portion of our diagram is the Data Collection portion before reaching the
first two components in this portion. In this step, we researched and brainstormed
different locations for data collection across the Iowa State University campus. We
considered the time of day and different angles possible to ensure that the data we
collected would be helpful for both the testing and training of our learning model by
finding a location with many objects to identify, such as cars and pedestrians. This helps
the project meet requirements, particularly requirement 5 (External data will be collected
around campus as needed), and must satisfy requirement 9 (Restrictions on gathering



sensitive information such as face details and license plates and compliance with IEEE
standards). We collected the data using the Livox Mid-40 LiDAR provided to us by Iowa
State University and a standard webcam. We also used the Livox Viewer tool on a laptop to
connect to the LiDAR to stream the data to a .lvx file. We used a portable power supply to
power the LiDAR and webcam and placed them on a tripod to sync their field of view as
much as possible. Below is a series of synchronized frames in the Livox Viewer and the
corresponding webcam data during data collection.

Figure 2� Livox Viewer combined frames of data on the left and corresponding webcam
data on the right.

The first set of components in our block diagram visual data recorders. Once we
decided where to collect data, we needed to physically collect it using a combination of
LiDAR data to train and camera footage to help us label the LiDAR data more accurately.
The amount of data we took at each location varied depending on the location and time.
However, the length averaged around an hour. We then took that data to verify if the
LiDAR data was clean and matched with the camera view. This is the first step in satisfying
requirement 2 (Creating a labeled dataset suitable for object detection).

The labeling section is our second set of modules following the data recording
components. We struggled in this section and eventually discovered a series of steps to
achieve a labeled dataset. We first pre-processed our data by converting the point clouds
into the correct data format, such as rosbag, using the Livox SDK tools. We then used an
interpolation tool in MATLAB to manually label our data. This labeling technique was
slower than we had hoped and did not allow automatic labeling. Instead of that technique
working, a team member needed to draw a bounding box around an object when it
appeared and when it disappeared from the frame to enable the tool to fill in the frames
between them. Like the previous section of components, the labeling group of modules
satisfies requirement 2 (Creation of a labeled dataset suitable for object detection). The



figure below showcases the user interface in the MATLAB LiDAR Labeling tool when
placing a keyframe, either when an object enters the field of view or leaves. The left
portion of the image shows the entire point cloud in one data frame. It is difficult to make
out the scene due to how disparate the points can appear without movement. The yellow
box is the proposed bounding box being manipulated to fit around a series of points that
make up an object. The views on the right are different side or top views of the bounding
box, allowing for easy resizing of the cuboid.

Figure 3� Manually labeling LiDAR data in MATLAB.

We also used the webcam data in this stage to help us determine where objects
needed to be labeled, as the MATLAB representation of the point cloud was often difficult
to parse. The following figure compares a frame in MATLAB to the same frame in the
webcam data.



Figure 4� Viewing labeled pedestrians in MATLAB (left) and the webcam (right).

The next component group comprises our block diagram's processing and training
portion. In our initial design, we planned to use tools like the You Only Look Once (YOLO)
algorithm and the Tensorflow library to create the best model for our dataset. However,
we moved away from using YOLO and instead have chosen to modify the OpenPCDet
model. Before sending the data to the model for training, we needed to complete another
step of data conversion. We wrote two Python scripts to translate the raw point cloud data
in LAS form and the labeled data in a MATLAB exported file to the file formats OpenPCDet
expected. Unfortunately, this is where we have ended with the project currently. We could
not train the model with our data due to time constraints. This set of modules meets
requirements 1 (Development of an object classification training model for LiDAR sensors),
2 (Creation of a labeled dataset suitable for object detection), and 3 (Compatibility
assurance with various LiDAR sensor data types).

Our final step is the testing step, where the team will manually check the trained
data against some data that we left explicitly for the checking step (20% for checking, 80%
for training). This meets requirement 13 (Rigorous testing and validation of the object
classification system are also essential) and will need to meet the milestone for the project
to succeed. If we do not meet the milestone of 75%+ accuracy, the team will discuss and
move back up the pipeline to a point further back and complete the steps again until our
model is successful. This step was unable to be completed during the duration of our
project due to challenges and time constraints, which will be discussed in the notes
section.

Description of Functionality

We originally planned on creating a simple user interface allowing them to upload
their data file and handle all the training and testing. This proved to be infeasible due to
several factors. The first was that the labeling process was less automatic than we hoped.
Beyond that, as we learned more about how models are implemented, we discovered that
they are designed to be run in a more manual configuration. Finally, we ran into several
complications in the model configuring process that prevented us from developing a tool
of that scale during our project timeframe.

As a result of these reasons, our project operates using a series of separate
programs and services as well as the modified OpenPCDet implementation. We wrote
some of these, and others are tools created for specific purposes that we utilized in our
process pipeline. Once Livox data has been collected, the Livox Viewer tool converts the
.lvx file to a .las file. This file is transferred to our .las to .npy file converter script written
in Python, creating a .npy file for each point cloud frame. These .npy files are used as data



inputs to the OpenPCDet model. The other input is made by using the Livox ROS Driver
codebase to convert the .lvx file to a .bag file, which utilizes an installation of ROS. This
.bag file is inserted into MATLAB and is labeled semi-manually using the LiDAR Labeler
tool in the LiDAR Toolbox. The final output of this labeling process is fed through a custom
converting script we wrote that takes in the exported MATLAB object file in a CSV format
and creates the series of text files that contain the labels for each frame in which they
exist. Finally, these files are added as the second input to the OpenPCDet model, which is
then trained and tested on the data. The model process splits the data into 80 percent for
training and 20 percent for testing.

This implementation is designed to meet all of our functional requirements. These
include having the algorithm detect objects correctly with an accuracy greater than 75%
within 500ms (1). It will also be scalable because of the OpenPCDet model, making it easy
to add new objects to the system if necessary (2). Adding the data converting module will
help ensure that our model can receive input in various LiDAR data types, including .lvx,
.ply, and .las (3). Using the different tools we have at our disposal, including the Livox
Viewer, the Livox ROS Driver, CloudCompare, and our scripts, we can convert between the
most common file types for various LiDAR systems.

Notes on Implementation

Throughout the implementation of our design, we ran into several issues and made
some changes as we discovered problems with our current implementation plan. Most
notably, we could not automatically label our lidar data and struggled to find and maintain
the necessary versions to run the model. We could not use the PointPillar network to label
our LiDAR data automatically. Instead, we semi-manually labeled our data with MATLAB’s
Lidar Labeler and an interpolation tool, requiring us to create a Python script to parse and
convert the LiDAR Labeler output into a format that OpenPCDet can use as input.

When beginning work with the model, we quickly found it necessary to utilize a
remote desktop due to the required resources to run the model. This meant working with
a clean Ubuntu install that each member could access remotely. From there, we needed to
configure various dependencies, including CUDA, PyTorch, OpenCV, and more. Due to
multiple factors, such as hardware limitations, interdependencies between tools, and the
data we worked with, this was a very intensive task that involved a lot of trial and error.
Due to this tool's limited documentation and small user group, running the model with our
desired configurations took a lot of work. It played a large part in the challenges faced
with the project's dependencies. This will be especially true when moving forward and
working with the custom data set template provided in the project.



Testing
Process

With this project being the first year of work, most of our time was dedicated to
building a solid foundation for this complex project. In addition, machine learning models
aren't tested like conventional software. These circumstances prevented us from
implementing many of the testing strategies outlined in this section. In our pursuit of
deploying object classification models in machine learning, we recognize the need for a
rigorous testing strategy inspired by the insightful paper by Eric Breck et al. at Google on
ML production readiness and technical debt reduction. As we delve into the testing
landscape for deep learning models, particularly those focused on object classification, we
anticipate unique challenges stemming from neural network complexities and dynamic
real-world data. Our future approach will integrate requirements, design considerations,
and specific testing instruments to ensure production readiness and minimize technical
debt. Drawing insights from the ML Test Score rubric, we aim to develop tests spanning
data quality, model robustness, monitoring, and governance. By aligning our testing efforts
with these critical facets, we strive to establish a resilient testing framework that
guarantees our object classification deep learning model's reliability, adaptability, and
interpretability in diverse production scenarios.

However, with future work focusing on testing the system as a whole, we have been
able to verify our work even in its infant stages. Various tools have allowed us to
determine if the environment we have configured is correct. This includes PyCharms
dependency checkers, OpenPCDet’s setup.py script, and error messages when running
further operations. Additionally, using the KITTI dataset was crucial as the benchmarks
posted on the front of the repository allow us to verify that our model works correctly.

Figure 5� Our testing model



Figure 5� Machine Learning (ML) systems demand thorough testing and ongoing
monitoring. A crucial distinction lies in the fact that, unlike manually coded systems (on
the left), the behavior of ML-based systems is not easily predetermined. Instead, it hinges
on dynamic aspects of the data and diverse choices made during model configuration.

Unit Testing

We understand that unit testing approaches provide particular difficulties when
used with machine learning models because these models are data-driven and
probabilistic. In contrast to deterministic programming, machine learning models depend
on data patterns, which introduces uncertainty and makes their behavior reliant on
particular datasets. We aim to develop a feature expectation schema that will allow us to
compare data intuitions against input data in both the training and serving stages by
encoding them into rules. We view data invariants as essential tools for performing dataset
comparisons and schemas as early warning systems for any deviations. A deterministic
unit test strategy will be aligned with a primary focus on reproducibility in model training.
We are conscious, however, of the considerable difficulties in establishing perfect
determinism in non-convex approaches. To guarantee reliability under various conditions,
we will verify the model's specifications in the future—including input requirements,
projected output, and performance indicators. By methodically incorporating model
specifications into our testing framework, we hope to confirm that our machine-learning
models fulfill the desired functions and function dependably in practical applications.

Interface Testing

Our future testing strategy will primarily use unit tests to validate the machine
learning algorithm and guarantee its performance and dependability compared to
predetermined criteria. However, we also recognize that interface testing is necessary to
ensure that the neural network and data inputs operate together seamlessly. This testing
will ensure the systems are adaptable and easy to use for automation or semi-automation
by providing user-friendly data labeling and capturing procedures. While a complex
machine learning algorithm user interface is outside our current project's purview, we will
prioritize evaluating how well data is transferred across neural network stages. In the
future, should time permit and the project scope grow, we plan to add more unit tests to
assess the software that uses the algorithm, improving the overall robustness and
usefulness of the system.



Integration Testing

We have identified two crucial areas in our future design plans that require our
focus: ensuring our training data is quality-assured and efficiently training our machine
learning model to recognize objects within LiDAR data. We acknowledge the critical
importance of the latter, realizing that the caliber of the data our model is trained on
impacts its performance. Therefore, we aim to perform comprehensive evaluations to
reduce the possibility of overfitting or underfitting. We will primarily concentrate on the
crucial route of model training, which entails moving data from the Livox Mid-40 LiDAR to
the last phases of the machine-learning procedure. We want to use tools for sanity checks
at each process stage and do human tests after the pipeline to guarantee data integrity
and compliance with model requirements. To avoid data contamination and preserve data
quality, we want to provide age limitations for data. We will watch and synchronize data
streams using Matlab's manual testing to ensure the model doesn't overlook important
information. Furthermore, automated checks will be implemented to confirm data
accuracy and compliance with the necessary format. Additionally, we use a small sample of
data to monitor and analyze anomalies closely, and we employ tools such as Tensorflow to
perform thorough testing and debugging at every stage of the process.

System Testing

Going forward, we acknowledge that system testing is crucial in assessing a
machine learning object categorization system to guarantee its dependability, resilience,
and efficiency in practical situations. This thorough analysis goes beyond evaluating
specific parts and concentrates on assessing the system as a whole to ascertain its
capacity to manage a range of input fluctuations. The model's performance will be
evaluated using critical metrics, including precision-recall and confusion matrices, which
offer important insights into the model's correctness, accuracy, and capacity to classify
examples accurately across various classes. Furthermore, we will prioritize
hyperparameter optimization to improve the model's performance and stability and
guarantee effective operation throughout time. Verifying that there are no resource leaks
will increase the dependability of the model in real-world settings. In general, our future
work will focus on extensive system testing to confirm that the machine learning object
classification system is reliable and ready for use before deployment.



Regression Testing

Moving forward, we acknowledge regression testing as an essential quality control
procedure in deep learning model building for object classification systems, emphasizing
object detection in captured LiDAR data. It will be crucial to ensure that any adjustments
we make to our model don't unintentionally cause new regressions or errors as it
develops. As part of our testing strategy, we will systematically verify that the model
retains its accuracy and dependability even after updates or improvements. Regression
testing will be given priority, in particular, to ensure that the model continues to be
capable of accurately identifying objects that it has previously detected. We will
meticulously discover and fix any aberrations that suggest a decline in performance by
contrasting the present projections with established benchmarks or ground truth data.
Through this rigorous testing approach, stakeholders will feel more confident about the
model's long-term dependability and adaptability for practical implementation, which will
aid in creating the most effective and accurate object detection algorithm.

Acceptance Testing

Our following efforts will be focused on meeting our client's deep learning model
criteria, which call for an object detection time of less than 500 ms and a minimum
accuracy of 75% on our testing data. We will highlight our dedication to fulfilling these
benchmarks by showcasing the model's object identification skills to the client during our
planned, frequent demos during meetings. We make every effort to make sure that the
performance of our unit tests satisfies our requirements, understanding their critical role
in guaranteeing the project's success. Many functional needs, such as constructing a
labeled dataset, developing the object classification training model, and deploying the
object classification system, depend on reaching the 75% accuracy criterion. Given our
access to several LiDAR sensors, we understand the importance of passing the Tensorflow
integration test, which will verify interoperability with different LiDAR sensors.
Furthermore, to evaluate prediction consistency in various scenarios, we will be slicing the
data in the future. This will improve the overall fairness and dependability of our model's
object identification.



Test Results

Inspired by the ML Test Score rubric and tailored to the complexities of deep
learning models for object classification, we aim to improve our testing procedure and
produce thorough outcomes that meet our project specifications. Unit testing will be the
first step in our future approach. We will focus on our primary method of testing the data,
using eighty percent of the data to train the model and twenty percent to test it based on
OpenPCDet’s results. Ensuring smooth data flow across neural network stages—even
without an advanced user interface—will be the primary emphasis of interface testing. By
addressing overfitting, underfitting, and data quality issues, integration testing will focus
on crucial pathways such as the caliber of training data and the training procedure.
Precision, recall, and confusion matrices will be used as primary metrics in system testing,
offering a comprehensive assessment of model performance across various datasets. We'll
methodically include every component to guarantee a thorough evaluation of
generalization and adaptability. Model stability and effective resource management will be
confirmed by verifying adjusted hyperparameters and minimizing resource leaks.
Regression testing will be essential to validate the reliability of the model over time and
ensure that changes preserve prediction quality. In conclusion, we believe that our
following testing approach will successfully negotiate the intricacies of deep learning
models for object categorization, exhibiting strong performance and satisfying
requirements in various scenarios.



Broader Context
Area Description Examples

Public health,
safety, and
welfare

This project can assist safety by using LiDAR
in several use cases, mainly vehicles and
detection systems when detecting
pedestrians or other vehicles on the road.
The deep learning network could also be
tweaked to identify different objects and help
remove human workers from dangerous
scenarios.

Increase road safety by detecting
vehicles more accurately in
systems such as stoplight car
detection or even autonomous
vehicles.

Could identify if an accident
occurred.

Has the potential to monitor
dangerous locations without
human supervision, which would
keep human operators safer while
ensuring privacy.

Global,
cultural, and
social

Our project does not substantially impact
these categories. However, some privacy
concerns could be eased by implementing
our project.

Replacing regular video cameras
with a LiDAR system could
improve the privacy of recorded
individuals.

Environmental There are no outstanding environmental
impacts compared to the typical
environmental damage caused by the
manufacturing of LiDAR and related items.
The laser is not dangerous because the LiDAR
we use is a class I laser. However, there may
be environmental applications for the object
detection algorithm, potentially for positive
impact.

Detecting the number of trees or
animals in a forest over time.

Observing erosion or other land
alterations with concrete data.

Economic This project will be available publicly and may
save companies work hours for developing
something similar. The cost of the system is
comparable to a security camera system. It
will likely provide consumers and companies
with alternatives for regular cameras
depending on their needs, as the software to
detect objects is more readily available and
more accessible to use. This is not a product
we are selling, so while it might slightly
improve LiDAR sales, it will not be marketed.

The learning model could entice
businesses or researchers to use
LiDAR systems, such as a regular
camera setup instead of others.

Because it will be made publicly
available, the model could assist
consumers with a lower budget
because it will work with different
LiDAR types



Conclusions
Review Progress

We have been able to make a significant amount of progress within our project. We
began this year knowing that completing our project would be pretty ambitious. Despite
this, we completed the tasks of collecting data, manually labeling objects within our
recorded data, configuring the environment to be able to successfully run the OpenPCDet
framework with a PV-RCNN model, creating a script to convert output LiDAR labels from
MATLAB into a format acceptable to OpenPCDet, and training with OpenPCDet using Kitti
data. This leaves the following contributors in an excellent position to continue adding to
the highly beneficial framework that is OpenPCDet. With this, we are confident that we
have contributed to allow us to let an extremely well tested and scalable model become
more accessible.

Value of Design

Our project's primary concern is having an object classification system that can
work with multiple LiDAR data formats and still perform when the amount of data
increases. Our project can provide a tremendous amount of value towards accomplishing
this goal. Contributing to OpenPCDet, which utilizes several models, allows individuals to
choose a configuration that will best meet their needs with a varying size of data. The
most significant piece of value that our project should provide is the ability for tons of
people to continue to add more to the OpenPCDet framework, which can help its
development into a more accessible and well-tested model. With the addition to the
OpenPCDet framework, we hope other researchers will take this generic model from
OpenPCDet and use our additions to work towards other more specific applications of
LiDAR detection.



Potential Future Steps

Despite all the progress we were able to make this semester, unfortunately we
weren’t able to complete the project in entirety. Considering this, the following steps to
our project will likely have to be completed by the next senior design group that picks up
this project next year. More specifically, there will only be a couple of tasks that need to be
completed before it can confidently be said that the project is in the final stages of
verification and testing to guarantee its functionality is correct and working as intended
regarding the requirements. These steps include the completion of running our personally
collected data on the OpenPCDet model and confirming that the detection and
classification aspects of the model work along with more than just the Kitti dataset; the
first dataset was trained with the OpenPCDet model. If this can be accomplished, then the
project is in great shape to be tested and applied to a more extensive variety of datasets,
along with more changes to the configuration to increase efficiency. More datasets mean
better guarantees of greater precision and accuracy when it comes to the classification
and identification of objects from LiDAR detection.
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Appendix 1 - Operation Manual
LVX to LAS format:
1. Requirements

a. Livox Viewer Installed

b. Sufficient space to store .las file

2. Open Livox Viewer

a. In the download directory, execute Livox Viewer.exe

3. Begin the converting process

a. On the top left of the screen, next to File, click Tools

b. In the drop-down menu, click File Converter

4. Select the files to convert

a. Ensure the conversion is set to Lvx to Las

b. Use the … button to navigate to the .lvx file you wish to convert

c. Use the … button to navigate to the directory where you want to save the

new file

d. Name the file that you wish

5. Finish the conversion

a. Click start

b. The conversion will take place and save the file in the directory you specified

with the name given

LVX to ROSbag format:
1. Requirements

a. Ubuntu 16.04 System

b. Livox_ros_driver repository cloned

c. ROS installed that matches the requirements of Livox_ros_driver

2. Initialization

a. Open the terminal in ../ws_livox and run $ catkin_make

b. Then run $ source ./devel/setup.bash to set up the ROS environment

3. Conversion



a. Finally, run $ roslaunch livox_ros_driver lvx_to_rosbag.launch

lvx_file_path:=""

b. Provide the path to the .lvx file you wish to convert in the quotation marks

c. The conversion will make the rosbag file in the same directory with the

same name as the original file

MATLAB Lidar Labeler:
1. Requirements

a. MATLAB 2023b or newer

b. Lidar Toolbox (MATLAB Add-On)

c. If LiDAR data is in ROSbag format

i. MATLAB ROS Toolbox (MATLAB Add-On)

2. Open Lidar Labeler

a. In the MATLAB Command Window, run the command lidarLabeler. This

opens a new window called Lidar Labeler.

3. Import LiDAR data

a. On the top-left, select Import -> Add Point Cloud -> From File, then choose

the Source Type from the drop-down. Next, click Browse and allocate the

lidar data file. Finally, select OK.

4. Create new labels

a. On the left-hand side, there is a vertical pane titled ROI Labels. Under the

title, click the Label icon, enter the label name and type, then click OK.

5. Set up the labeling algorithm

a. In the Algorithm section located in the top-middle of the screen, click Select

Algorithm -> Point Cloud Temporal Interpolator.

b. Right below the Select Algorithm option, click Configure Automation -> Start

time to End Time.

6. Find objects of interest

a. On the very top-left, there are two tabs, LABEL and LIDAR. Select the LIDAR

tab.



b. Using the play buttons on the bottom-middle of the screen, find the time an

object enters the scene and adjust the Start Time to the Current time.

Change the End Time to the Current time an object leaves the scene.

c. Once the End and Start times are set, return to the LABEL tab on the top-left

and click Automate.

7. Label objects

a. While in the Automatemode, only label the specific object from which you

found its start and end time.

b. Select the appropriate label you created on the left in the ROI Labels.

c. Move the time slider to the first frame and place the label on the object.

i. With the label placed and selected in the LIDAR tab, click the

Projected View button.

ii. Using the Top-View, click and drag the circle above the box to change

the label’s heading.

iii. Using the Top-View, Side-View, and Front-View windows, resize the

label to encompass the object’s point cloud.

d. Move the time slider to the last frame and place the label on the object.

i. Repeat steps 7i through 7iii.

e. Optionally, move the slider to several frames between the first and last and

label the object. This can improve the label’s adherence to the object.

f. Finally, in the AUTOMATE tab, click Run. Play back the results to verify

correctness.

i. If the labels track the point clouds properly, click Accept.

ii. Otherwise, click Undo Run and adjust the labels accordingly. Then

click Run again.

g. After clicking Accept, find and set another object's start/end time and repeat

the steps above.

8. Exporting labels

a. In the LABEL tab, click Export -> To File to save the labels.



b. To save your session, click Save Session (highly recommended) in the LABEL

tab.

Converting MATLAB Labels to CSV Format:
1. Requirements

a. MATLAB 2023b or newer

b. Lidar Toolbox (MATLAB Add-On)

2. Converting to CSV

a. InMATLAB, click Open, navigate to the labels exported from MATLAB

labeler, and select the file.

b. In the MATLAB Command Window, run the following

dataTable = timetable2table(gTruth.LabelData);

csvFileName = 'exported_data.csv';

writetable(dataTable, csvFileName);

c. This will convert the labeled data into a CSV format readable by the Python

script below.

Python Label Conversion Script:
3. Requirements

a. Python 3.x or newer

4. Install dependencies

a. The following dependencies are required to run the script: csv, shutil, os

b. It is recommended to use Python’s built-in package installer to install these

i. From a command line, run pip install csv, shutil, osv

5. Run the script

a. Place the exported_data.csv file generated from the previous instructions in

the same folder as this script

b. From a command line, run the script with the following command

i. python convertLabels.py



c. The script will print the labels, create a folder titled labels containing the

labeled data in text files in a format readable by OpenPCDet, and create a file

named labeled_data.csv that includes the labels in an unnested CSV format.

OpenPCDet:
1. Requirements:

a. Dependencies
i. Linux (tested on Ubuntu 14.04/16.04/18.04/20.04/21.04)

ii. Python 3.6+

iii. PyTorch 1.1 or higher (tested on PyTorch 1.1, 1,3, 1,5~1.10)

iv. CUDA 9.0 or higher (PyTorch 1.3+ needs CUDA 9.2+)

v. spconv v1.0 (commit 8da6f96) or spconv v1.2 or spconv v2.x

vi. Pcdet library and dependent libraries. It can be installed using the

following command: python setup.py develop

b. Hardware
i. A CUDA-enabled GPU, i.e., a 1080 series GPU. Alternatively, the CPU

can be used; however will result in reduced performance.
vii. A large amount of storage is dedicated to this. We recommend at

least 512GB of storage.

c. Data
viii. Point clouds formatted as NumPy arrays (.npy)

1. We used the KITTI dataset, which had this already

2. The data we collected was exported from .lvx to LAS, then to

NumPy array using Python.

2. Data Preparation
a. If using a custom dataset, convert point clouds from LAS to NumPy array

format using the python .las to .npy converter script shown in Appendix 4.
b. Upload the data set into the project and organize it into the file structure

provided by OpenPCDet.

File structure for a custom dataset:

OpenPCDet

├── data

│ ├── custom



│ │ │── ImageSets

│ │ │ │── train.txt

│ │ │ │── val.txt

│ │ │── points

│ │ │ │── 000000.npy

│ │ │ │── 999999.npy

│ │ │── labelsr

│ │ │ │── 000000.txt

│ │ │ │── 999999.txt

├── pcdet

├── tools

3. Training
a. Specify the model you want to run, the number of epochs, and the batch

size.
b. Command to run training procedure:

python train.py --cfg_file ${CONFIG_FILE} --batch_size

${BATCH_SIZE} --epochs ${EPOCHS}

4. Testing
a. Specify the model, batch size, and the number of epochs you want to

evaluate.
b. Also, specify what checkpoint of the trained model to evaluate. The option is

to assess the latest or previously trained model version. Another option is to
evaluate all checkpoints to make a performance curve.

Test specific checkpoint:

python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --ckpt ${CKPT}

Test all checkpoints:

python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --eval_all



Appendix 2 - Initial Versions of Design

Figure 6� Initial design iteration of the system.

This diagram describes how we initially designed the project after the first few
conversations with our client. We initially believed that we would create our
machine-learning model from scratch. We eventually figured out that modifying an
existing model and changing its configurations to work better with the Livox LiDAR data
we were using would be much more feasible.

We were also not sure exactly what we would use for our machine-learning library and
were considering YOLO. The group had been resigned to thoroughly labeling everything
by hand in MATLAB, although we didn’t fully understand what that meant at this time.



Figure 7� Second design iteration of the system.

By this point, we had been researching machine learning models for a while and
understood that we should use Tensorflow and Keras instead of YOLO for compatibility
reasons. We also looked into ways to label automatically, and discovered a promising
network called Point Pillar that we hoped to use.

Another addition to this iteration was a filtering or converting layer we planned to create
to allow multiple LiDAR formats. This was replaced by a combination of scripts we wrote
in Python and Livox tools to convert files.



Figure 8� SE 492 initial design iteration of the system.

By this point in the implementation and design cycle, we knew we would use the
OpenPCDet model and attempt to modify it. We kept most of the design the same as our
final one; however, we still believed we could use Point Pillar in MATLAB to label
automatically. We thoroughly researched it and attempted to use it during this semester,
and discovered using it would require essentially training a new model, which would, in
turn, need the labels we are trying to receive from the Point Pillars model.



Appendix 3 - Other Considerations
We learned a lot of lessons during our time working on this project. When we

started, almost every group member knew nothing about machine learning and how to
train or effectively gather data for a model. This caused us to spend a lot of time at the
beginning of the project to try and get a baseline of knowledge to begin the project. One
thing that we wished we could have done differently was to be more focused on our
research and finalize our goal earlier in the process. We went on many tangents that were
interesting but ultimately not as useful as we would have liked.

The project was exciting and engaging, which helped us push through the
problematic troubleshooting issues surrounding the tools we were attempting to use for
the project. At the beginning of the project, our client informed us that one of our
challenges would be a lack of existing resources for the various problems we would
encounter, and that was a lesson that we had reinforced early on and multiple times
throughout the process. One of our biggest takeaways is to always expect there to be a
complication that you were not aware of because this project had several.

All in all, we believe we chose a complex project and did it justice. We researched
several implementations of tools we could use, and although many didn’t work out, we
used our new knowledge to discover new tools that we took advantage of. Even if we could
not test our data at the level we wanted to, we made great strides in creating a pipeline of
programs and tools to allow Livox LiDAR data to be used in a more competitive model than
Livox’s Detection Simulation repository.



Appendix 4 - Code
Python Label Conversion Script
After exporting the lidar labels from MATLAB in .csv format, converting them into a format
acceptable to OpenPCDet is necessary. The Python code below converts the .csv exported
from MATLAB into a directory of .txt files acceptable for OpenPCDet training. It can also
print each label and save the labels in a .csv format.
import csv, shutil, os

dirPath = os.path.abspath(__file__).replace("\\", "/")[0:len(__file__)-len(os.path.basename(__file__))]

def getLabelInfo(title_row):

'''

Return label information from CSV

:param title_row: List of strings in the first row of CSV file

:return labels: names of labels (e.g. [Person, Vehicle]), labelRanges: Ranges of columns that

each label occupies in the CSV (e.g. [(1,195), (196, 450)])

'''

labelStartPositions = []

labels = []

title_row = title_row.strip()

title_row = title_row.split(',')

numOfDifLabels = (len(title_row) - 1) / 9

label = ""

for index, rawLabel in enumerate(title_row):

if rawLabel != "Time":

for char in rawLabel:

if not char.isnumeric() and not char == "_":

label += char

if not label in set(labels):

labelStartPositions.append(index)

labels.append(label)

label = ""

labelRanges = getLabelColumnRange(labelStartPositions, numOfDifLabels)

return labels, labelRanges

def getLabelColumnRange(labelStartPositions, numOfDifLabels):

'''

Returns the range of columns each label occupies in the CSV

:param labelStartPositions: Starting position of each label (e.g. [1, 196])

:param numOfDifLabels: Number of different labels in CSV title_row

:return labelRanges: Ranges of columns that each label occupies in the CSV (e.g. [(1,195),

(196, 450)])

'''

labelRanges = []

for index, value in enumerate(labelStartPositions):

if index + 1 < len(labelStartPositions):



labelRanges.append((value, labelStartPositions[index + 1] - value))

else:

labelRanges.append((value, int((numOfDifLabels * 9) - value) + value))

return labelRanges

def getFilteredData():

'''

Filters out just the rows with labeled data from the CSV

:return labelData: Labeled data from CSV in the format (frame_count, x, y, z, dx, dy, dz,

heading_angle, label_name)

'''

with open(dirPath + "exported_data.csv", newline='') as csvfile:

rowIndex = 1

colIndex = 1

labels = []

labelRanges = []

labelData = []

currLabelData = []

title_row = csvfile.readline()

labels, labelRanges = getLabelInfo(title_row)

csvfile.seek(0, 0)

reader = csvfile.readlines()

for i in range(len(labelRanges)):

for rowIndex, row in enumerate(reader):

if rowIndex > 0:

row = row.strip()

row = row.split(',')

if row[labelRanges[i][0]] != '':

for colIndex in range(len(row)):

if colIndex >= labelRanges[i][0] and colIndex <= labelRanges[i][1]:

if row[colIndex] != '':

currLabelData.append(row[colIndex])

currLabelData.append(labels[i])

currLabelData.insert(0, rowIndex-1)

labelData.append(currLabelData)

currLabelData = []

return labelData

def parse_data(input_list, repeat_count):

'''

Parse out the frameCount, x, y, z, dx, dy, dz, heading_angle, label_name from each filtered row

:param input_list: Filtered row from CSV

:param repeat_count: Number of times data (x, y, z, dx, dy, dz, heading_angle) is repeated

:return parsed_data: Data parsed into separate lists of (frameCount, x, y, z, dx, dy, dz,

heading_angle, label_name)

'''

parsed_data = []

for i in range(1, repeat_count + 1):

x = input_list[i]

y = input_list[i + repeat_count]

z = input_list[i + 2 * repeat_count]

dx = input_list[i + 3 * repeat_count]

dy = input_list[i + 4 * repeat_count]

dz = input_list[i + 5 * repeat_count]



heading_angle = input_list[i + 8 * repeat_count]

label = input_list[len(input_list)-1]

parsed_data.append([input_list[0], x, y, z, dx, dy, dz, heading_angle, label])

return parsed_data

def printData(data):

for i in data:

print(i)

def saveToCSV(data):

f = open(dirPath + "labeled_data.csv", "w", newline='')

for row in data:

writer = csv.writer(f)

writer.writerow(row)

f.close()

def saveToTextFiles(data):

'''

Save each frame of lidar data to a text file named after the frame number.

:param data: Lidar data in an array [x, y, z, dx, dy, dz, heading_angle, label_name]

'''

if os.path.exists(dirPath + "labels/"):

shutil.rmtree(dirPath + "labels/")

os.mkdir(dirPath + "labels")

if not os.path.exists(dirPath + "labels/"):

os.mkdir(dirPath + "labels/")

for row in data:

f = open(dirPath + "labels/" + str(row[0]) + ".txt", "a")

for index, item in enumerate(row):

if index != 0:

if index + 1 <= len(row):

f.write(str(item) + " ")

else:

f.write(item)

f.close()

def getLabeledData():

filteredData = getFilteredData()

resultData = []

for val in filteredData:

numOfLabelsInCurrFrame = int((len(val) - 2) / 9)

for i in parse_data(val, numOfLabelsInCurrFrame):

resultData.append(i)

return resultData

def main():

labeledData = getLabeledData()

printData(labeledData)

saveToCSV(labeledData)

saveToTextFiles(labeledData)

main()



Conversion script from .las to .npy
This script converts our custom point cloud data into the format OpenPCDet expects.
Points clouds are initially in .lvx format, which can be converted to .las using the file
converter in Livox Viewer. Then, this Python script will convert the .las files to .npy.
import laspy

import numpy as np

import os

#change for linux

in_directory = r"C:\Users\sachp\sdmay24-31\OpenPCDet\data\livoxlas"

out_director = r"C:\Users\sachp\sdmay24-31\OpenPCDet\data\livoxnpy\points"

for file_name in os.listdir(in_directory):

if(file_name.endswith('.las')):

las = laspy.read(os.path.join(in_directory, file_name))

x = las.x

y = las.y

z = las.z

intensity = las.intensity

np.save(out_director + '\\' + file_name[:file_name.index('.')] + ".npy", np.vstack((x, y, z,

intensity)).T)



Appendix 5 - Definitions and Utilized Tools
Deep Learning Model: A deep learning model is an artificial neural network with multiple
layers (deep architecture) that enables automatic learning of hierarchical representations
from data, facilitating the extraction of complex features and patterns.

OpenPCDet: OpenPCDet is a straightforward, simple, self-contained open-source project
for LiDAR-based 3D object detection used in Livox Detection V2.0. This project utilizes a
Point-Voxel Region-based Convolutional Neural Network (PV-RCNN)

LiDAR: a detection system that works on the principle of radar but uses light from a laser. It
provides output data in the form of point clouds.

Point Cloud: A set of data points in a 3D coordinate system—commonly known as the XYZ
axes. Each point represents a single spatial measurement on the object's surface. Taken
together, a point cloud represents the entire external surface of an object.

Keras: Keras is an open-source high-level neural network API written in Python. It serves
as an interface for building, training, and deploying artificial neural networks, simplifying
the process of developing deep learning models. Keras is often used with other deep
learning libraries, such as TensorFlow or Theano, and provides a user-friendly and modular
approach to constructing neural networks.

TensorFlow: TensorFlow is a free open-source software library for machine learning and
artificial intelligence. It can be used across various tasks but focuses on the training and
inference of deep neural networks.

Livox Mid-40� A LiDAR sensor developed by Livox, a company specializing in LiDAR
technology. The Livox Mid-40 LiDAR sensor is known for its compact design,
high-performance capabilities, and cost-effectiveness. It is commonly used in various
applications, including robotics, autonomous vehicles, and industrial automation, where
precise and real-time 3D mapping is required.

Livox Viewer: Livox Viewer is a computer software designed for Livox LiDAR sensors and
Livox Hub. Users can check real-time point cloud data of all the Livox LiDAR sensors
connected to a computer and can easily view, record, and save the cloud data for offline or
further use.

Cloud Compare: CloudCompare is a 3D point cloud (and triangular mesh) processing
software. It was initially designed to compare two dense 3D point clouds (such as the ones
acquired with a laser scanner) or between a point cloud and a triangular mesh. It relies on a
specific octree structure dedicated to this task. Afterward, it has been extended to a more
generic point cloud processing software, including many advanced algorithms (registration,
resampling, color/normal/scalar fields handling, statistics computation, sensor



management, interactive or automatic segmentation, display enhancement, etc.). This tool
will be explicitly utilized in our project to visualize the point cloud we gather from the Livox
Mid 40.

Machine Learning: Machine learning is a subset of artificial intelligence that involves the
development of algorithms and statistical models that enable computer systems to improve
their performance on a specific task over time without being explicitly programmed. It
relies on analyzing patterns and data to make predictions and decisions or identify trends,
allowing machines to learn from experience and adapt to new information. Machine
learning encompasses various techniques, including supervised learning, unsupervised
learning, and reinforcement learning, and it finds applications in areas such as image and
speech recognition, natural language processing, and predictive analytics.

MatLab: MATLAB, short for "Matrix Laboratory," is a high-level programming language and
interactive environment primarily designed for numerical computing, data analysis, and
visualization. It is widely used in academia, industry, and research for mathematical
modeling, simulation, and algorithm development tasks. We used this to label our data
using the LiDAR Labeler tool and the interpolation automation mode.

Lidar Toolbox: Lidar Toolbox provides algorithms, functions, and apps for designing,
analyzing, and testing lidar processing systems on MATLAB. You can perform object
detection and tracking, semantic segmentation, shape fitting, lidar registration, and
obstacle detection. The toolbox provides workflows and an app for lidar-camera
cross-calibration.

OpenPyLivox: Python3 driver for Livox lidar sensors

PyLas: Python library for lidar LAS/LAZ IO. LAS (and its compressed counterpart LAZ) is a
popular format for lidar point clouds and entire waveform. Pylas reads and writes these
formats and provides a Python API via Numpy Arrays.

ROS (Robot Operating System): A set of software libraries and tools that help you build
robot applications

YOLO: "You Only Look Once" is a machine learning algorithm developed for real-time
object detection. It operates with a single forward pass through a neural network,
simultaneously predicting bounding boxes and class probabilities within a grid system. This
makes it highly efficient for various applications such as surveillance, autonomous vehicles,
and robotics.

Google Suite: This tool includes Google Drive, docs, slides, and more. We have utilized this
to create detailed documentation updated in real-time for this project.



3D Detection & Tracking Viewer: This project was developed to view 3D object detection
and tracking results. It supports rendering 3D bounding boxes as car models and rendering
boxes on images.

Kitti Vision Benchmark Suite: Kitti contains a suite of vision tasks built using an
autonomous driving platform. The complete benchmark contains many tasks, such as
stereo, optical flow, visual odometry, etc. This dataset includes the object detection
dataset, including the monocular images and bounding boxes. We are using Kitti to test the
OpenPCDet model before using our data.

Livox ROS Driver: livox_ros_driver is a new ROS package specially used to connect LiDAR
products produced by Livox. The driver can be run under Ubuntu 14.04/16.04/18.04
operating system with an installed ROS environment (indigo, kinetic, melodic). Tested
hardware platforms that run livox_ros_driver include Intel x86 CPU and ARM64 hardware
platforms (such as Nvidia TX2 / Xavier, etc.).

Linux Ubuntu 14.04/16.04/18.04: Operating system with ROS environment (indigo, kinetic,
melodic) installed

Livox Detection: Combined with the advantages of HAP, this detector can achieve better
perception performance than the Horizon. Another improvement is adopting an
anchor-free method inspired by CenterPoint to make the detector more flexible in dealing
with multiple datasets.

Livox Viewer: Livox Viewer is a computer software designed for Livox LiDAR sensors and
Livox Hub. Users can check real-time point cloud data of all the Livox LiDAR sensors
connected to a computer and can easily view, record, and save the cloud data for offline or
further use. This is how we will initially visualize the data we gather before converting it.

Point Pillar: PointPillars is a method for 3-D object detection using 2-D convolutional
layers. PointPillars network has a learnable encoder that uses PointNets to learn a
representation of point clouds organized in pillars (vertical columns). The network then
runs a 2-D convolutional neural network (CNN) to produce network predictions, decodes
the projections, and generates 3-D bounding boxes for different object classes, such as
cars, trucks, and pedestrians.

OBS: OBS Studio is a free, open-source, cross-platform screencasting and streaming app.


