Team 31: LIDAR-Based Environmental Object Classification System

LiDAR-Based Environmental
Object Classification System

DesicN DocuMENT
Team: sdmay24-31
Client: Ahmad Nazar

Advisers: Mohamed Y. Selim
Team Dr. Members/Roles:
Ella Rekow
Sachin Patel
Zachary Schmalz
Anuraag Pujari

Ryan Sand
Daniel Rosenhamer

Team Email: sdmay24-31@iastate.edu
Team Website: https://sdmay24-31.sd.ece.iastate.edu/

Revised: 12/03/2023 v2.0.1



Team 31: LIDAR-Based Environmental Object Classification System

Executive Summary

DEVELOPMENT STANDARDS & PracTICES USED

- Requirement Analysis:
- Clearly define the objectives and requirements of the deep learning model.
- Ample accuracy and response time for detections 3d point cloud

- Version Control:

- Use a version control system (e.g., Git) to manage code changes and collaborate
with a team.

- Code Organization:
- Follow a modular and organized code structure.
- Adhere to coding standards and style guides.

- Documentation:

- Provide comprehensive documentation for code, algorithms, and data
preprocessing steps.

- Document assumptions, limitations, and dependencies.
- Code Reviews:

- Conduct regular code reviews to identify issues, improve code quality, and share
knowledge within the team.

- Model Validation and Evaluation:

- Implement cross-validation techniques to assess model performance.

- Use appropriate metrics for evaluating the model's accuracy, precision, recall, etc.
- Hyperparameter Tuning:

- Systematically tune hyperparameters to optimize model performance.

- Leverage tools like Grid Search or Random Search for hyperparameter
optimization.



Team 31: LIDAR-Based Environmental Object Classification System

- Monitoring and Logging:
- Implement logging mechanisms to track model training progress.
- Set up monitoring for model performance in production.
SUMMARY OF REQUIREMENTS
- Introduce and train a machine learning model for LiDAR

- Modify or create an algorithm to detect objects with greater accuracy than current
public solutions

- Address the issue of non-standardization in LiDAR data with a training model.
- Research varying LiDAR data sets
- Develop a method to match the sets efficiently
- Ensure compatibility between different LIDAR models
- Develop an optimized solution that works across a variety of LiDAR devices.
- Publish our data and information via academic paper
- Write and review academic paper to showcase our data collection
- Describe the modified or created algorithm
- Post our data collected at lowa State University for public use
APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM
- Com S 228: Introduction to Data Structures
- Com S 252: Linux Operating System Essentials
- Com S 311: Introduction to Design and Analysis of Algorithms
- Com S 321: Introduction to Computer Architecture and Machine Level Programming
- Com S 363: Introduction to Database Management Systems
- Com S/S E 309: Software Development Practices
- SE 317: Introduction to Software Testing
- CprE 288: Embedded Systems Introduction
- Cpr E 388: Embedded Systems II: Mobile Platforms
- Cpr E/SE 329: Software Project Management

- ENGL 314: Technical Communication



Team 31: LIDAR-Based Environmental Object Classification System

NEw SKILLS/ KNOWLEDGE ACQUIRED THAT WAS NOT TAUGHT IN COURSES

- Machine Learning
- Deep Learning
- Training with accurate data additions
- Ability to develop ML models for LiDAR data enhancement
- Working with Data Sets
- Understanding good/clean data
- Assess LiDAR data quality and identify discrepancies
- LiDAR setup and management skills
- Initialization and configuration
- ROS (Robot Operating System)
- Data Collection Execution
- Experience with LiDAR data visualization and manipulation software
- Knowledge of techniques for merging LiDAR data from multiple sources or models.

- Understanding of data registration and alignment methods



Team 31: LIDAR-Based Environmental Object Classification System

Table of Contents

Development Standards & Practices Used

Summary of Requirements

Applicable Courses from Iowa State University Curriculum
New Skills/Knowledge acquired that was not taught in courses
List of figures/tables/symbols/definitions

1 Team, Problem Statement, Requirements, and Engineering Standards

1.1 Team Members

1.2 Required Skill Sets for Your Project

1.3 Skill Sets covered by the Team

1.4 Project Management Style Adopted by the team

1.5 Initial Project Management Roles

2 Introduction

2.1 Problem Statement

2.2 Requirements & Constraints
2.3 Engineering Standards

2.4 Intended Users and Uses

3 Project Plan

3.1 Task Decomposition

3.2 Project Management/Tracking Procedures

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria
3.4 Project Timeline/Schedule

3.5 Risks And Risk Management/Mitigation

3.6 Personnel Effort Requirements

3.7 Other Resource Requirements

4 Design

4.1 Design Content

4.2 Design Complexity

4.3 Modern Engineering Tools
4.4 Design Context

4.5 Prior Work/Solutions

4.6 Design Decisions

4.7 Proposed Design

4.8 Technology Considerations
4.9 Design Analysis

5 Testing

5.1 Unit Testing
5.2 Interface Testing

O 0 00 X® I &~ W W N

— _ - =
3 o ou S B W B D

20
21
23
24
27
27
27
27
28
29
30
30
34
35
36

37
38



Team 31: LIDAR-Based Environmental Object Classification System

5.3 Integration Testing
5.4 System Testing
5.5 Regression Testing
5.6 Acceptance Testing
5.7 Results
6 Implementation
= Professionalism
7.1 Areas of Responsibility
7.2 Project Specific Professional Responsibility Areas
7.3 Most Applicable Professional Responsibility Area
8 Closing Material
8.1 Discussion
8.2 Conclusion
8.3 References
8.4 Team Contract
Appendix

38
39
40
41
42
13
45
45
46
47
48
48
48
48
49
56



Team 31: LIDAR-Based Environmental Object Classification System

LIST OF FIGURES/TABLES/SYMBOLS/DEFINITIONS

Figures:

Tables:

Section 3.1 Figure 1: Task breakdown chart

Section 3.4 Figure 2: Gantt chart breakdown of the project.
Section 4.7.1 Figure 3: Initial design pipeline

Section 4.7.2 Figure 4: Design 1 iterated from the initial design

Section 5 Figure 5: Image from [4] showing difference of traditional software testing to
ML-based system testing

Section 6 Figure 6: Planned implementation pipeline

Section 3.6 Table 1: Personal Effort break down of each of the major 5 tasks
Section 4.4 Table 2: Design Context table of project impacts

Section 7.1 Table 3: NSPE Table with Software Engineering code of ethics applied to each
area of responsibility.



Team 31: LIDAR-Based Environmental Object Classification System

1 Team, Problem Statement, Requirements, and Engineering
Standards

1.1 TrEaM MEMBERS

Ella Rekow Sachin Patel
Zachary Schmalz Anuraag Pujari
Ryan Sand Daniel Rosenhamer

1.2 REQUIRED SKiLL SETS FOR YOUR PROJECT

LiDAR Technology Expertise:

e We need In-depth knowledge of LiDAR technology, including its principles, components,
and applications.

e Familiarity with different LiDAR models and manufacturers.

e Knowledge of pros and cons of different LiDARs (3D compared to 360 degree LiDAR)
Data Processing and Analysis:

e Proficiency in data processing and analysis techniques specific to LiDAR data.

e Ability to manipulate and interpret LiDAR point cloud data.

e We need to be able to use Python to translate data and interpret the original types of data
recorded

Programming and Software Development:
e Experience with LiDAR data visualization and manipulation software.

LiDAR Data Fusion:
e Knowledge of techniques for merging LiDAR data from multiple sources or models.
e Understanding of data registration and alignment methods.

Machine Learning and Al:

e Familiarity with machine learning algorithms for LiDAR data classification and feature
extraction.

e Ability to develop Al models for LiDAR data enhancement.



Team 31: LIDAR-Based Environmental Object Classification System

LiDAR Calibration:
e Proficiency in calibrating LiDAR sensors to ensure accurate data capture.
e Experience in calibrating multiple LIDAR models for consistency.
Data Quality Assurance:
e Skill in assessing LiDAR data quality and identifying discrepancies.
e Knowledge of data validation and error correction techniques.
Cross-Compatibility Testing:
e Ability to test LiDAR solutions across different LIDAR models to ensure compatibility.
e Experience with optimizing solutions for various LiDAR setups.
Quality Assurance and Testing:

e (Capability to perform rigorous testing and quality assurance so that the optimized solution
works reliably across different LiDAR devices.

Organization and Documentation Skills

e Ability to accurately describe processes and designs to ensure they are documented
correctly

e (Capability to manage time and prioritize tasks so that team members can be efficient
Team Management and Leadership

e Knowledge of how to work with other team members and lead based on identified
strengths and weaknesses

Communication and Collaboration

e Ability to communicate clearly and effectively with team members

e Experience planning and discussing designs and ideas with other team members
1.3 SKILL SETS COVERED BY THE TEAM
LiDAR Technology Experience:

e Daniel Rosenhamer - LiDAR implementation for object detection (CprE 288)

e Sachin Patel - 2D LiDAR obstacle detection for autonomous robot traversal

e Ryan Sand - 2D LiDAR path creation in Autonomous Robotics



Team 31: LIDAR-Based Environmental Object Classification System

Data Processing and Analysis:
e Anuraag Pujari - DS 201,202 and internship as data engineer
e Ryan Sand - data display and transforming training at RSM
Programming and Software Development:

e Zach Schmalz - Various COM S/SE courses as well as Web/Mobile internship at Genova
Technologies

e Sachin Patel - COM S courses, three software engineering internships, personal projects
e Ryan Sand - Several COMS and SE courses and internships

Machine Learning and Al:
e Anuraag Pujari - DS 202, Undergraduate research assistant for a machine learning project
e Ella Rekow - Personal research into the application and workings of neural networks.
e Sachin Patel - Currently taking COM S 474

Sensor Integration:
e Ella Rekow - Integrated sensors to utilize in FIRST Robotics Challenge in high school

e Ryan Sand - research into 2D LiDAR and Inertial Measurement Unit sensor integration for
Robotics Club

e Daniel Rosenhamer - Experience implementing sonar, infrared, and LiDAR sensors
e Sachin Patel - Robotics sensor integration (Cardinal Space Mining Club)
Cross-Compatibility Testing:
e Ryan Sand - SE 317
e Zach Schmalz - SE 317 and industry regression testing for internship at Genova Tech
e Ella Rekow - SE 317 and industry level testing at Netsmart
Quality Assurance and Testing:
e Ryan Sand - SE 317 and work at RSM
e Ella Rekow - SE 317 and industry level testing at Netsmart

e Daniel Rosenhamer - Testing experience at John Deere

10



Team 31: LIDAR-Based Environmental Object Classification System

Organization and Documentation Skills:

Daniel Rosenhamer - Actively use Git, GitLab, Confluence, and Jira for personal projects,
university projects, and work projects.

Ryan Sand - Git and DevOps, as well as experience as the Documentation Manager on my
High School FIRST Tech Challenge team

Sachin Patel - Git, Trello, ticket managers
Zach Schmalz - Git, Atlassian products for internships, GitLab for university projects

Ella Rekow - Atlassian products, Documentation for information technology group at lowa
State, software documentation for numerous classes

Team Management and Leadership:

Anuraag Pujari - IE 470

Daniel Rosenhamer - Programming lead on high school FIRST Robotics Challenge team.
Team lead in CprE 288 and ComS/SE 309.

Ryan Sand - Lead of Robotics Autonomous Snowplow team

Ella Rekow - Lead learning community for Women in Tech, lead programmer in robotics
team, project manager for intern project

Sachin Patel - Software and electrical lead of Cardinal Space Mining Club for 2 years

Communication and Collaboration:

Zach Schmalz - SE 309/other group project course, and working in a small group at Genova
Ryan Sand - group projects in coursework and worked in small groups in internships

Ella Rekow - Numerous class projects, Managing student workers at the Iowa State Solution
Center, Managing learning community for Women in Tech

Daniel Rosenhamer - Team experience through Com S/SE 309, SE 329, CprE 288, CprE 381,
and four internships on various development teams.

Sachin Patel - team projects in clubs, courses, and internships

Anuraag Pujari- lots of group projects through courses at lowa State

11



Team 31: LIDAR-Based Environmental Object Classification System

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Our team has opted for a hybrid approach, combining elements of both AGILE and waterfall

development methodologies for our project. This choice aligns well with the nature of our solution,

which revolves around a research topic. In practice, this means we will engage in iterative

development, allowing us to make incremental progress and adapt as needed. However, certain
aspects of the project will require a more traditional, linear approach, where we must fully complete
specific tasks before moving on to the next stage. We will use Trello to manage, organize, and track
our tasks efficiently. Additionally, GitLab will serve as our platform for issue tracking and version
control, ensuring seamless collaboration and code management throughout development.

1.5 INITIAL PROJECT MANAGEMENT ROLES

Ella is responsible for team organization and/or management, client interaction, and as
keeper of Documentation/Secretary.

Dan will be responsible for managing the communication mediums, LiDAR subject matter
expert

Anuraag will be the acting Data Manager and architect

Sachin will be the Deep Learning Model subject matter expert

Ryan will be the Data Collection Lead and will assist with the organization
Zach will be the regression testing lead as well as the QA manager

Note these are the initial assignments and may be modified throughout the project's
progression to better fit the needs of our client, group, and solution.

12



Team 31: LIDAR-Based Environmental Object Classification System

2 Introduction

2.1 PROBLEM STATEMENT

There is a lack of 3D LiDAR object classification machine learning models that work with multiple
LiDAR data formats; are scalable in terms of the model size, number of object classes, and the ease
of adding features; and are efficient in real-time applications.

2.2 REQUIREMENTS & CONSTRAINTS
Functional requirements:
e (1) Development of an object classification training model for LiDAR sensors
o Object detection/classification accuracy of >75% within 500ms
e (2) Creation of a labeled dataset suitable for object detection
o Ensure comprehensive labeling of all different object types
e (3) Compatibility assurance with various LiDAR sensor data types
o Should work with at least 3 data types, including: .Ivx, .ply, .las
Resource requirements:

e (4) Sufficient computational resources for storing the collected data, training, and testing
the model

o Graphics card required of RTX 3060 or better
m  Focus on ensuring high-quality data processing and model training
o 16GB Ram required

m  Requires a minimum of 16GB RAM for efficient operation and good refresh
rates

m  Aim to facilitate smooth data processing and real-time model responses
Ul requirements:
e (5) Published dataset is hosted on GitHub in an easily accessible/navigable manner
o Host the dataset on GitHub with an intuitive README
o Ensure that users can easily retrieve the dataset

o The dataset has clear and unambiguous details of the model

13



Team 31: LIDAR-Based Environmental Object Classification System

Performance requirements:
e (6) Necessary that our model can classify objects with >75% accuracy
e (7) Model should achieve identification within a 500 ms response time
Legal requirements:
e (8) Adherence to data privacy and ethical standards
o Safeguard and maintain the confidentiality of personally identifiable information

e (9) Restrictions on collecting sensitive information such as face details and license plates
and compliance with IEEE standards

Maintainability requirements:

e (10) Necessitates ongoing model maintenance and documentation for future reference and
collaboration

e (1) Create the model in a way that it is scalable so that it has the ability to work well with
wider ranges of objects and larger datasets

e (12) Well documented so people can have an easier time using it
Testing requirements:

e (13) Rigorous testing and validation of the object classification system is also essential.
Testing is covered more in the testing-specific section of the document

2.3 ENGINEERING STANDARDS
e ISO/IEC 20889:2018 - Preserve personally identifiable information
e IEEE 1588-2008 (PTPv2), PPS (Pulse Per Second)
e [EEE 1451 family of standards
o These standards collectively create a framework for smart transducers and sensors.
e Agile development process

o Will utilize Agile to facilitate workflow and promote effective collaboration and
documentation

14



Team 31: LIDAR-Based Environmental Object Classification System

2.4 INTENDED USERS AND USES

The outcomes of this project are poised to cater to a diverse spectrum of industries, ranging from
research specializing in visual sensing to security systems in need of heightened sensor technology
resilience. It extends its impact to individuals exploring innovative applications of obstacle
detection and avoidance, which has many applications in the field of robotics for path planning.
Moreover, LiDAR object detection is useful for deriving the number of objects, for example, the
number of trees in a forest or students in a classroom. The project's ripple effect extends to
improving autonomous vehicles for identifying obstacles and avoiding collisions. There are also
many drone applications for surveying land and identifying key objects for which this project is
useful.

15



Team 31: LIDAR-Based Environmental Object Classification System

3 Project Plan

3.1 TAsk DECOMPOSITION

TASKS:
e Task1- Research Machine Learning
o Research various LiDAR technologies for project assessment(Req 3, 10)

m  Research different types of LiDARs to determine if livox-mid 40 satisfies
the needs to develop a model.

o Evaluate different machine learning models with similar applications such as
camera detection models (Req 1, 2, 5, 6, 7, 12, 13)

o Explore and review machine learning models similar in scope and application to
the project's requirements. (Req 1, 2, 5, 6, 7)

e Task 2 - Collect data with LiDAR and camera

o Take scans with the LiDAR to collect data to test with machine learning model
(Req 4, 9, 10)

o Discover online sources that contain different types of LiDAR data to consider for
usage against our machine learning model (Req 3, 10)

m  Online datasets can also be used as reference against our own data for how
it should be formatted, processed, etc.

o Take a high diversity set of data, capturing all different units we would like our
model to identify (cars, pedestrians, cyclists, buses) (Req 4)

m  Diversity refers to how we are able to collect data in different ways by
using different angles for the point of view, like setting the LiDAR up on a
rooftop. This also refers to how the traffic level of data collected is
important. Some locations will have few pedestrians/cars, while others
have many. This is something that must be taken into consideration when
collecting data

e Task 2 - Process Data
o Encode and format data to prepare for processing by neural network (Req 2, 3, 5)

o Label data by classifying and labeling objects within the LiDAR data to use for
training of machine learning model(Req 2, 5)

16



Team 31: LIDAR-Based Environmental Object Classification System

e Task 3 - Develop and Train Model

o Research different neural networks to consider for the development of our own
model (Req 1, 5)

o Explore data compression options (Req 10)

o Configure and train model to meet requirements of a quality classification model
(Req1,2,5,6,7,12,13)

e Task 4 - Validate Model
o Verify the milestones have been met (Req 1, 2, 6, 7, 13)
o Check over and finish documentation (Req 12)

o Revisit previous tasks if necessary

Figure 1: Task breakdown.

3.2 PrOJECT MANAGEMENT/TRACKING PROCEDURES

Our team has opted for a hybrid approach, combining elements of both AGILE and waterfall
development methodologies for our project. This choice aligns well with the nature of our solution,
which revolves around a research topic. In practice, this means we will engage in iterative
development, allowing us to make incremental progress and adapt as needed. However, certain
aspects of the project will require a more traditional, linear approach, where we must fully complete
specific tasks before moving on to the next stage. This hybrid approach allows us to benefit from
AGILE's flexibility and responsiveness, ensuring we can incorporate feedback and adjust our course
based on evolving requirements. Simultaneously, the waterfall elements provide structure and a
clear roadmap for certain aspects of the project, particularly those that involve well-defined and
sequential tasks.

17



Team 31: LIDAR-Based Environmental Object Classification System

As for tracking progress throughout the course of this and the next semester, our team will use
Trello to manage, organize, and track tasks efficiently. Trello's visual board system will enable us to
have a clear overview of our project's status, easily assign and monitor tasks, and ensure everyone is
on the same page regarding ongoing activities. In addition to Trello, GitLab will be employed as our
platform for issue tracking and version control. GitLab's version control capabilities will help us
manage our codebase effectively, allowing multiple team members to collaborate seamlessly while
keeping track of changes. The issue-tracking feature will assist in identifying, prioritizing, and
resolving any problems or tasks that arise during development.

This combination of Trello and GitLab will contribute to a well-organized and transparent project
management process, facilitating efficient collaboration and ensuring that our team stays on track
to achieve our project goals.

3.3 PrOJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

METRICS:
1. Number and size of quality data sets
2. Model accuracy percentage
3. Real-Time Model detection speed in milliseconds
4. Precision Recall

5. Confusion Matrix

MILESTONES:
1. Task1- Research Machine Learning
11.  Develop a basic understanding of machine learning
1.1.1.  Review multiple academic papers and other online sources such as
GitHub repositories with client
1.1.2.  Understand various methods to resolve errors in predictions from
precision-recall and confusion matrix metrics
1.2.  Explore machine learning frameworks and libraries
1.2.1.  Create a prototype using TensorFlow
1.2.2.  Identify at least one existing closely related model

18



Team 31: LIDAR-Based Environmental Object Classification System

2. Task 2 - Collect Data
2.1. Take scans with the LiDAR and camera

2.1.1.  The LiDAR scans will be completed once per month in different

locations

2.1.2.  We will use 75 - 100 GBs of diverse data sets

2.2.  Discover online sources that contain different types of LiDAR data
2.2.1.  We will discover online sources of 20 additional data sets
2.3.  Take a high diversity set of data, switching up the locations, angles, and traffic
levels
2.3.1. The data sets will be narrowed down to 15 diverse sets to be used,

including our own

3. Task 3 - Process Data

3.1.  Narrow down to usable, quality datasets
3.1.1.  There will be 15 diverse datasets to be used
3.2.  Segment and transform LiDAR data based on areas of interest
3.2.1.  Find areas of interest being the different classifications and

different scenarios

3.3.  Label datasets manually in MATLAB

The manual labels will become ground truth data due to being

completely correct
4.  Task 4 - Develop and Train Model

4.1. Research different neural networks

We will discover 10 research papers that describe the many neural

networking possibilities

4.1.1.

4.2.  Build an improved model based on OpenPCDet
4.3.  Configure model to meet requirements of a quality classification model

The model configuration will provide the basis for the model to

4-31.
track objects with 75%+ accuracy and detect objects in 500ms



Team 31: LIDAR-Based Environmental Object Classification System

5.  Task 5 - Validate Model
5.1.  Verify the milestones have been met

5..1.  The model will be trained to track objects with 75%+ accuracy and
detect objects in 500ms

5.1.2.  Confirm high coverage of scenarios

3.4 PROJECT TIMELINE/SCHEDULE

Task Duration | Week 1|Week 2 | Week 3 |Week 4 | Week 5| Week 6 | Week 7 | Week 8 | Week 9| Week 10| Week 11| Week 12| Week 13 | Week 14| Week 15
Research Machine Learning 100h

Collect data with LIDAR and camera | 60h _
Process Data 105h

Develop and Train Model 90h

Validate Model 90h

Task Duration | Week 16| Week 17 | Week 18| Week 19| Week 20| Week 21| Week 22| Week 23 | Week 24| Week 25| Week 26 | Week 27 | Week 28 | Week 29
Research Machine Learning 100h

Collect data with LIDAR and camera | 60h

Process Data 108h

Develop and Train Model 90h

Figure 2: Gantt chart breakdown of the project. The task of researching machine learning has a
duration of 100 hours over weeks 1-10. The task of collecting LiDAR and camera data is 60 hours
over weeks 10-15. The task of processing the data has a duration of 105 hours over weeks 14-20. The
task of developing the model and training the model has a duration of go hours over weeks 20-25.
And finally, the task of validating the model has a duration of 9o hours over weeks 25-29.

Our schedule plan contains our five main tasks over the time allotted to our project. We plan on
wrapping up our data collection phase of the project by the end of week six and will be working
concurrently on developing the model during that time. The model will be configured by the end of
week 11, and we will begin to label our data sets as soon as we finish collecting them in week 7. At
the start of week 14, our group will begin to train our model using the data and configuration
choices made in the previous two tasks. Finally, once that task is done in week 20, we will proceed
to the final phase of our project, which involves testing our model. We left plenty of time for this
task to help ensure we can revisit previous tasks if needed to meet our milestones during our tests.

20



Team 31: LIDAR-Based Environmental Object Classification System

3.5 Risks AND Risk MANAGEMENT/MITIGATION

RISKS:
e Task1 - Research Machine Learning

(0.1) While researching machine learning, important issues include practical problems arising from
resource intensiveness, which necessitates large computational resources and related financial and
environmental costs. Sensitive data processing must be done carefully due to security concerns,
which include vulnerability to adversarial attacks and privacy breaches. The absence of universal
standards in the rapidly evolving ML field contributes to reproducibility challenges, while ethical
responsibilities necessitate vigilance against unintended consequences. Continuous learning,
regulatory compliance, and human factors, such as effective collaboration, round out the landscape.
In addressing privacy concerns, our project is committed to ensuring that LiDAR scanning will not
involve identifying individuals through recognizable features or personal data. Rigorous measures
will be implemented to prioritize privacy and uphold ethical standards in LiDAR technology.
Despite these challenges, proactive risk management, ethical considerations, and collaborative
efforts within the research community are pivotal for steering ML development responsibly.

e Task 2 - Collect Data

(0.5) While we currently possess a certain amount of data, we need to expand our dataset through
additional data collection efforts. Acknowledging a potential risk associated with circumstances
that might impede our ability to record sufficient data is imperative. This risk becomes particularly
salient during the colder months when there tend to be fewer individuals walking around in large
groups. Moreover, the prospect of our sole LiDAR system encountering technical issues poses an
additional challenge. To effectively mitigate these concerns, a proactive strategy involves meticulous
planning to ensure the acquisition of at least a few sets of our data. This foresighted approach
becomes crucial in circumventing potential disruptions. Furthermore, to diversify our dataset
sources, we can enhance our reliance on research to identify and incorporate other publicly
available datasets, thus fortifying our data pool against unforeseen challenges.

e Task 3 - Label Data Set

(0.1) The current step presents minimal risks, primarily attributed to the fact that we already
possess the required data and the task at hand involves manual labeling. A relatively low inherent
risk level characterizes this process as it allows for direct visual detection of any potential
inaccuracies during the labeling process. The capability to detect errors in real-time positions us
advantageously, enabling prompt corrective actions and minimizing any potential loss of time. This
meticulous approach underscores our commitment to precision in data labeling, ensuring that the
labeled dataset meets the required standards. The real-time error detection mechanism serves as a
built-in quality control measure, further enhancing the robustness of this step within the overall
project workflow.

21



Team 31: LIDAR-Based Environmental Object Classification System

e Task 4 - Develop Model

(0.5) The primary risk inherent in developing the model task lies in the potential expenditure of
time on configuring the model in a manner that fails to meet our accuracy and time-based
benchmarks. It is essential to delve into the intricacies of this risk by acknowledging that achieving
the desired model configuration might not materialize seamlessly in the initial attempts. This
inherent uncertainty is duly recognized and incorporated into our project schedule. The
acknowledgment that the perfect model creation is not an immediate expectation underscores our
preparedness for an iterative process, allowing for multiple iterations and adjustments as needed to
align with our defined benchmarks. This nuanced understanding of the risk underscores our
commitment to a flexible and adaptive approach, ensuring that the iterative nature of model
development is factored into our project timeline. The potential risk in this step revolves around
incorrectly training the model, stemming from misconfigurations identified in Task 2 or the
utilization of flawed datasets from public sources or our own data collection efforts. It's essential to
delve deeper into this risk by recognizing that while not considered massive, it can significantly
impact the accuracy and performance of the model. As previously indicated, our project schedule
has been designed with the expectation of iterative refinement, acknowledging the likelihood of
needing multiple iterations to reach our targeted milestones. This risk mitigation strategy
inherently allows flexibility and adaptation during the model training. To further bolster our risk
mitigation efforts, the meticulous approach taken in Task 2 becomes crucial. By dedicating time to
finding and recording accurate datasets, we proactively minimize the risk associated with the usage
of faulty data. This preemptive strategy is a foundational measure to enhance the quality and
reliability of the datasets employed during model training, aligning with our commitment to
achieving the desired benchmarks.

e Task 5 - Validate Model

(0.1) The risk associated with this task is relatively low, primarily centered on verifying whether the
model performs according to the predefined specifications. Any deviations or issues encountered
during this stage are more likely to be attributed to potential shortcomings in previous tasks. It's
crucial to recognize that the only conceivable challenge lies in the possibility of conducting the tests
incorrectly, leading to a potentially underestimated final model accuracy. Our proactive strategy to
mitigate risk involves a thorough testing approach. By adhering to our planned methodology of
testing the data in multiple ways, we aim to ensure a robust evaluation process. This multifaceted
testing strategy aligns with our commitment to precision and safeguards against inaccuracies
stemming from a singular testing approach. The emphasis on thorough testing underscores our
dedication to delivering a model that meets and potentially exceeds our envisioned accuracy
benchmarks.

22



Team 31: LIDAR-Based Environmental Object Classification System

3.6 PERSONNEL EFFORT REQUIREMENTS

Task

Hour Estimate

Explanation

Task 1 - Research Machine
Learning

100 hours

We researched different LiDAR
technologies to determine the
best for our project. After that,
we looked into different
machine-learning models with
similar applications and looked
through them.

Task 2 - Collect data with
LiDAR and camera

60 hours

Use the LIDAR to gather a
reasonable amount of data points
from different locations. We
expect this to take the least time,
even though we must monitor
the LiDAR as it collects data.

Task 3 - Process Data

105 hours

Before creating a strong machine
learning model, we concentrated
on enhancing and reducing the
datasets to ensure they were
high-quality and useful.
Choosing datasets that most
accurately reflected the situations
and settings pertinent to our
goals required a careful curation
procedure. Then, we started
working on the difficult task of
preprocessing LiDAR data, using
segmentation methods to draw
attention to particular regions of
interest that were vital to our
investigation. It was essential to
convert this data into a voxel
format to improve its viability for
further machine-learning
procedures. Using MATLAB, the
dataset labeling process was
carried out manually with
meticulous attention to detail. A
strong basis for the model
training stage was established by
manual labeling, which
guaranteed precision and
applicability in identifying and
annotating objects within the
dataset.

23




Team 31: LIDAR-Based Environmental Object Classification System

Task 4- Develop and Train 90 hours In this task, we will develop a

Model model that we deem suitable and
then train the model created with
the labeled data set. This task
presents a large learning curve.

Task 5 - Validate Model 90 hours We will run the model to ensure

it fits our accuracy requirements,
using the test and actual data in a
20-80 split. Most of the time
allocated here is if we need to
retune our model after our tests
to ensure we reach our
milestones.

Table 1: Personal Effort breakdown of each of the 5 tasks: Research Machine Learning, Collect data
with LiDAR and camera, Process Data, Develop and train model, and Validate model

3.7 OTHER RESOURCE REQUIREMENTS

This section includes tools, libraries, and other various resources not addressed above to be utilized
in our project.

Cloud Compare: CloudCompare is a 3D point cloud (and triangular mesh) processing
software. It was originally designed to compare two dense 3D point clouds (such as the
ones acquired with a laser scanner) or between a point cloud and a triangular mesh. Tt
relies on a specific octree structure dedicated to this task. Afterward, it has been extended
to a more generic point cloud processing software, including many advanced algorithms
(registration, resampling, color/normal/scalar fields handling, statistics computation,
sensor management, interactive or automatic segmentation, display enhancement, etc.).
This tool will be utilized specifically in our project to visualize the point cloud we gather
from the Livox Mid 4o.

DeepSense 6G Data: DeepSense 6G is a real-world multi-modal dataset that comprises
coexisting multi-modal sensing and communication data, such as mmWave wireless
communication, Camera, GPS data, LiDAR, and Radar, collected in realistic wireless
environments. We will use this data when necessary to add to our already gathered data to
ensure we have a good labeled data set to input.

Google Suite: This tool includes Google Drive, docs, slides, and more. We have utilized this
to create detailed documentation updated in real-time for this project.

Gitlab: GitLab is a DevOps software package that can develop, secure, and operate software.
This platform will be GitLab, a DevOps software package that can develop, secure, and
operate software. We will use this tool to upload and update our code for this project.

3D Detection & Tracking Viewer: This project was developed to view 3D object detection
and tracking results. It supports rendering 3D bounding boxes as car models and rendering
boxes on images.

24




Team 31: LIDAR-Based Environmental Object Classification System

- Kitti Vision Benchmark Suite: Kitti contains a suite of vision tasks built using an
autonomous driving platform. The full benchmark contains many tasks, such as stereo,
optical flow, visual odometry, etc. This dataset contains the object detection dataset,
including the monocular images and bounding boxes. We are using Kitti to reformat the
data to make sure we can use multiple different LiDAR data inputs in our model

- Livox Mid-40: The Livox Mid-40 LiDAR sensor is incredibly cost-effective. It detects objects
as far as 260 meters away [1] and uses an advanced non-repetitive scanning pattern to
deliver highly accurate details in the FOV. A compact body enables users to easily embed
units into existing designs for greater flexibility and performance. The Mid-40 has been
mass-produced and is ready to ship immediately to facilitate uses in autonomous driving,
robotics, mapping, security, and other areas, from small-batch testing to large-scale
applications. The Livox LiDAR is what we will be using to gather all of the data on Iowa
State’s campus.

- Livox ROS Driver: livox_ros_driver is a new ROS package specially used to connect LiDAR
products produced by Livox. The driver can be run under Ubuntu 14.04/16.04/18.04
operating system with ROS environment (indigo, kinetic, melodic) installed. Tested
hardware platforms that can run livox_ros_driver include: Intel x86 CPU platforms and
some ARM64 hardware platforms (such as Nvidia TX2 / Xavier, etc.).

- Linux Ubuntu 14.04/16.04/18.04: Operating system with ROS environment (indigo, kinetic,
melodic) installed

- Livox Detection: Combined with the advantages of HAP, this detector can achieve better
perception performance compared with the Horizon. Another improvement is adopting an
anchor-free method inspired by CenterPoint to make the detector more flexible in dealing
with multiple datasets.

- Livox Viewer: Livox Viewer is a computer software designed for Livox LiDAR sensors and
Livox Hub. Users can check real-time point cloud data of all the Livox LiDAR sensors
connected to a computer and can easily view, record, and save the cloud data for offline or
further use. This is how we will initially visualize the data that we gather before we convert
it.

- MATLAB: MATLAB is a programming and numeric computing platform used by millions of
engineers and scientists to analyze data, develop algorithms, and create models.

- Lidar Toolbox: Lidar Toolbox provides algorithms, functions, and apps for designing,
analyzing, and testing lidar processing systems. You can perform object detection and
tracking, semantic segmentation, shape fitting, lidar registration, and obstacle detection.
The toolbox provides workflows and an app for lidar-camera cross-calibration.

- Point Pillar: PointPillars is a method for 3-D object detection using 2-D convolutional
layers. PointPillars network has a learnable encoder that uses PointNets to learn a
representation of point clouds organized in pillars (vertical columns). The network then
runs a 2-D convolutional neural network (CNN) to produce network predictions, decodes
the predictions, and generates 3-D bounding boxes for different object classes, such as cars,
trucks, and pedestrians.

25



Team 31: LIDAR-Based Environmental Object Classification System

OBS: OBS Studio is a free and open-source, cross-platform screencasting and streaming
app.

OpenTopography: OpenTopography facilitates access to topography data, tools, and
resources to advance our understanding of the Earth’s surface, vegetation, and built
environment. We provide web-based access to high-resolution (meter to sub-meter scale),
regional, and global (2-9o m resolution) topography data acquired with lidar, radar, and
photogrammetry technologies. The data are co-located with on-demand processing tools to
generate derivatives and visualizations that are particularly useful for Earth-Science
applications.

OpenPCDet: OpenPCDet is a clear, simple, self-contained open-source project for
LiDAR-based 3D object detection. This project utilizes a Point-Voxel Region-based
Convolutional Neural Networks (PV-RCNN) [5]

Power source: Specifically a standby uninterruptible power supply (UPS) with 600VA /
360W battery backup

PyLas: Python library for lidar LAS/LAZ IO. LAS (and its compressed counterpart LAZ) is a
popular format for lidar point clouds and full waveform. Pylas reads and writes these
formats and provides a Python API via Numpy Arrays.

SciKit-Learn: scikit-learn (formerly scikits.learn and also known as sklearn) is a free
software machine learning library for the Python programming language. It features
various classification, regression, and clustering algorithms, including support-vector
machines, random forests, gradient boosting, k-means, and DBSCAN, and is designed to
interoperate with the Python numerical and scientific libraries NumPy and SciPy.

TensorFlow: TensorFlow is an open-source software library for machine learning and
artificial intelligence. It can be used across a range of tasks but focuses on training and
inference of deep neural networks.

Keras: Keras is an open-source library that provides a Python interface for artificial neural
networks. Keras acts as an interface for the TensorFlow library

26



Team 31: LIDAR-Based Environmental Object Classification System

4 Design

4.1 DESIGN CONTENT

Our project’s design content is centered around deciding on and implementing the best options for
a neural network that labels objects from input data collected by a LiDAR system. The goal of the
project is to provide an effective deep learning model to label the data that is taken at lowa State
University that can be applied to other data sets taken from different LiDAR systems as well.

4.2 DEsigN COMPLEXITY

Our project showcases a significant level of technical intricacy, evident through its multifaceted
nature, involving various interconnected systems with the primary objective of real-time object
identification utilizing a Lidar sensor. While we have chosen the Livox Mid-4o0 sensor for our
specific application, our overarching goal is to compile an extensive dataset to serve as the
cornerstone for training deep learning models dedicated to Lidar-based object recognition,
regardless of the sensor in use.

The technical complexity of our project is further emphasized by the unique challenges it tackles in
an uncharted area within the field. Existing literature, as cited by the IEEE Sensors Council [2],
underscores the sparse nature of Lidar point cloud data and the associated hurdles in network
processing. This necessitates exploring innovative approaches and solutions, making a valuable
contribution to the field's body of knowledge.

The scarcity of readily available models, as mentioned in the IEEE Sensors Council report, signifies
that our project is at the forefront of research. Our foray into deep learning on point sets, as also
acknowledged by Stanford University, underscores our dedication to advancing knowledge in this
domain.

Finally, one of the most apparent reasons why this project is complex is the fact that we are dealing
with unordered 3D point cloud data, as opposed to ordered datasets. This adds complexity because
we need to account for how the points are located in three-dimensional space without relying on
the data being preliminarily sorted into sections resembling 2D arrays. Our algorithm will need to
function without advanced knowledge of where each data point in the point cloud is in the order of
points to be processed.

Taken together, these factors demonstrate that our project contains sufficient complexity. Our
collaboration with a Ph.D. candidate to complete this project serves as a testament to its advanced
nature, cementing its position as a technically intricate undertaking.

4.3 MODERN ENGINEERING TOOLS
1. Sensor Technology: We are using a Livox Mid-40 LiDAR sensor to capture various 3D data
for our project. The LiDAR sensor will be used in parallel with a camera in order to
accurately label the objects recorded by the LiDAR. The data recorded from the LiDAR is
one of the most important components of our project. It will be used to train our object
classification model.

27



Team 31: LIDAR-Based Environmental Object Classification System

2. Data Visualization and Processing Tools: Our project utilizes various tools to visualize

the data being collected, including Livox Viewer, Cloud Compare, PyLas, and OpenPyLivox.

Each tool allows us to visualize the data in a 3D platform and interact with settings to

manipulate the data shown. This will help us process the data before labeling it.

3. Data Labeling: Once the data has been recorded, we will need to label it before training

our machine learning model with it. The data will be labeled in two different ways, which
will produce two different sets of labeled LiDAR data. The first labeled data set will come
from manually labeling our data using the Lidar Toolbox in Matlab. The second labeled

data set will come from automatically labeling our data using the YOLO V4 Network.

4. Deep Learning Frameworks: The two labeled data sets will be fed into our deep learning

models. We will be using TensorFlow and Keras as our deep learning models. These models

combine the labeled data and produce a deep 3D visual data set. This will then be

processed again before it is a completely labeled set.

4.4 DESIGN CONTEXT

Area Description Examples
Public health, | This project can be able to provide assistance to Increase road safety by detecting
safety, and safety through the usage of LiDAR in several vehicles more accurately in systems
welfare different use cases, the main one being vehicles such as stoplight car detection or
and detection systems when it comes to detecting | even autonomous vehicles
pedestrians or other vehicles on the road. The
deep learning network could also be tweaked to
identify other objects and could help remove Could possibly identify if an accident
human workers from dangerous scenarios. occurred
Has potential to monitor dangerous
locations without human
supervision, which would keep
human operators safer while
ensuring privacy
Global, Our project does not impact these categories in a | Replacing regular video cameras
cultural, and substantial way, however some privacy concerns with a LiDAR system could improve
social could be eased by implementing our project the privacy of the individuals being
recorded by the system
Environmental | There are no outstanding environmental impacts | Detecting the number of trees or
compared to the normal environmental damage animals in a forest over time
caused by the manufacturing of the LiDAR and
related items. The laser itself is not dangerous
because the LiDAR we are using is a class I laser. Observing erosion or other land
However, there may be environmental alterations with concrete data
applications for the object detection algorithm,
potentially for positive impact.

28




Team 31: LIDAR-Based Environmental Object Classification System

Economic This project will be available publicly and may The learning model could entice
save companies work hours for developing businesses or researchers to use
something similar. The cost of the system is LiDAR systems instead of others,

comparable to a security camera system and will | such as a regular camera setup
likely provide consumers and companies with
alternatives for regular cameras depending on

their needs, as the software to detect objects is Because it will be made publicly
more readily available and easier to use. This is available, the model could assist
not a product we are selling, and so while it might | consumers with a lower budget
slightly improve LiDAR sales, it will not be because it will work with different
marketed. LiDAR types

Table 2: Project Impact Overview including Public Health, Safety, and Welfare, Global, Cultural, and
Social, Environmental and Economic impacts.

4.5 PRIOR WORK/SOLUTIONS

While research on the use of Lidar as a data method for deep learning is available, as evidenced by
papers such as the IEEE Sensor Council's "Deep 3D Object Detection Networks Using LiDAR Data:
A Review" from 2021 and "BirdNet: a 3D Object Detection Framework from LiDAR Information,"
presented at the 21st International Conference on Intelligent Transportation Systems (ITSC) in
2018[3], limited exploration in this field is due to the high cost and inconsistency associated with
Lidar technology. The abstract of this IEEE paper mentioned earlier acknowledges this challenge:
"Recently, deep neural networks have been developed to extract powerful object features from
sensor data. However, the sparsity of Lidar point cloud data poses challenges for network
processing." This highlights that even prominent engineering communities recognize the hurdles in
this concept.

Nonetheless, a paper titled "PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation"[5] presents systems that can take in a voxel or raw point cloud to classify
information, offering a broader solution to the issue. Additionally, Livox has a repository on GitHub,
Livox Detection-simu, with the goal of being a real-time identification model. It does, noticeably,
have a number of major issues and is no longer maintained. However, challenges remain,
particularly when dealing with Lidar data, given the inconsistency in the format transmitted by the
Sensor.

29



Team 31: LIDAR-Based Environmental Object Classification System

4.6 DESIGN DECISIONS

Our team has chosen to use the Lidar that is provided to us by our client. We reached this decision
because we were comparing different LIiDARSs to one another and felt no need to buy a different one
when the one we used could do everything we needed. Our team has identified multiple areas on
campus that can be considered high-activity areas where we would want to gather data. Depending
on the specific area, we have decided on a point where we would also place the Lidar for the best
results. Next, we need to decide on the amount of data we need from these areas. We do not have a
specific number on the size of data that we are planning to collect because we will need to collect
the data and determine how useful it will be to our model. If we need more data, we can attempt to
locate usable datasets from open-source online resources. However, this is a backup as we would
like to gather the data ourselves to ensure its relevance and quality. The last thing we have is our
overall system design, which is how our data will be processed into the model and which machine
learning model to use.

We have decided to manually label the data using MATLAB and Optimized Point Pillar labeling. We
decided against creating our own model from scratch and have decided to use the OpenPCDet
object detection algorithm to help object recognition in our data. Then, we will run the trained
model on our testing data and validate the results. We have decided to take 80% of the data to use
for training and 20% for testing. We have also decided that the model should have an accuracy of
75% or greater to be deemed successful.

4.7 PrOPOSED DESIGN

Our team has worked with our client to determine the best path forwards while researching and
learning more about the skills required to complete the project. We have reached the conclusion
that the future design listed below in section 4.7.2 is the most robust plan out of the alternatives we
discussed. We reached this conclusion after creating Design o in section 4.7.1 and testing it using
MATLAB for labeling and determining if the OpenPCDet algorithm is a better alternative than
creating a new model from scratch. We will likely need to continue to create more design iterations
throughout the next semester as we learn more about the intricacies of our project.

30



Team 31: LIDAR-Based Environmental Object Classification System

4.71  Design o (Initial Design): Design Visual and Description

Gta Collection

\

@ Processing

\

[ LiDAR

-
(o

Raw Data

-

Synced
Data

e
o
=

[Validate Using Ground

Truth Labels

)\ /

Figure 3: Initial design iteration of system. Data collection includes LiDAR and Camera data being
synced. That is then fed into our Data Processing pipeline of MATLAB labeling to create a raw

Validation

i ||

1]

labeled data set. That also will be used for validation as ground truth labels. There will also be
YOLO/Tensorflow and keras impacting the Machine Learning Algorithm that will be validated
using the ground truth labels.

Our initial design was decided upon after consulting with our client and discussing the project's
possibilities with him. This process took several meetings to finalize this design and all of'its
components. We have yet to have the opportunity to test the entirety of it, especially because this
pipeline showcases the entire process our data will need to be sent through. However, we tested the
data collection and the beginning of the data processing and labeling sections using MATLAB and
OpenPCDet.

The first portion of our diagram is the Data Collection portion. Before we reach the first two
components in this portion, we need to decide on where we want to collect data. In this step, we
researched and brainstormed different locations for data collection across the Iowa State University
campus. We considered the time of day and different angles possible to ensure that the data we
collected would be helpful for both the testing and training of our learning model by finding a
location with many objects to identify, such as cars and pedestrians. This helps the project meet
many requirements, in particular, requirement 5 (External data will be collected around campus as
needed) and must satisfy requirement 9 (Restrictions on collecting sensitive information such as
face details and license plates and compliance with IEEE standards).

31



Team 31: LIDAR-Based Environmental Object Classification System

The first set of components in our block diagram is the recording set of modules. Once we decided
on the locations where we wished to collect data, we needed to physically collect it using a
combination of LiDAR data to train and camera footage to help us label the LiDAR data more
accurately. Depending on the location and time, the amount of data we took at each location varied.
However, the length averaged around an hour. We then took that data and combined it together so
that the camera picture could overlap the LiDAR data. This is the first big step in satisfying
requirement 2 (Creation of a labeled dataset suitable for object detection).

Our second set of modules following the data recording components is the labeling section. We will
use a mixture of manual and automatic labeling to obtain a raw set of labeled data from the LiDAR
and camera overlay. In our initial design, we looked into ways to completely automate the labeling
process and planned to fall back on manually labeling the data in MATLAB if we could not find a
method that works with our dataset. Like the previous section of components, the labeling group of
modules satisfies requirement 2 (Creation of a labeled dataset suitable for object detection).

The next component group comprises the processing and training portion of our block diagram. In
our initial design, we planned to use tools like the You Only Look Once (YOLO) algorithm and the
Tensorflow library to create the best model we could for our dataset. This process would provide us
with our final labeled dataset. This set of modules meets requirements 1 (Development of an object
classification training model for LiDAR sensors), 2 (Creation of a labeled dataset suitable for object
detection), and 3 (Compatibility assurance with various LiDAR sensor data types).

Our final step is the testing step, where the team will manually check the trained data against some
data that we left specifically for the checking step (20% for checking, 80% for training). This meets
requirement 13 (Rigorous testing and validation of the object classification system are also essential)
and will need to meet the milestone set for the project to succeed. If we do not meet the milestone
of 75%+ accuracy, the team will discuss and move back up the pipeline to a point further back and
complete the steps again until our model is successful.

Functionality

The project will operate by allowing a user to input their LiDAR data into the neural network and
receive the correctly labeled data based on what they want to be labeled. This will be as seamless as
possible, although Design o shown above only showcases how we will create the neural network,
not how the deep learning algorithm will be accessed and implemented in a user-friendly way. Our
project’s initial goal is to get the network created, and we will add extra features, such as a better
way to manipulate or access the data, if we reach that goal.

This planned implementation is designed to meet all of our functional requirements. These include
having the algorithm detect objects correctly with an accuracy greater than 75% within 5ooms (1). It
also will be scalable because of the use of the OpenPCDet model which will make it easy to add new
objects in the future to the system if necessary (2). The addition of the data converting module from
Design o to Design 1 will help ensure that our model can receive input in a variety of LiDAR data
types, including .lvx, .ply, and .las (3). We will begin implementing this design next semester and
make more design iterations as necessary to ensure we meet the requirements of our project.

32



Team 31: LIDAR-Based Environmental Object Classification System

4.7.2  Design 1 (Design Iteration)

As we look towards the future of this project, we have made some changes to the first iteration of
our design that we will be implementing. These changes came from lessons learned after
prototyping part of the initial design using MATLAB and OpenPCDet. The changes aim to make the
project more feasible and accurate to the project requirements.

Design Visual and Description

Gta Collection \ @ Processing \

LiDAR [ Camara

Synced
Data

Validate Using Ground
Truth Labels
Validation k /

Figure 4: First design iteration of the system after the initial. Data collection includes LiDAR and
Camera data being synced. That is then fed into our Data Processing pipeline of MATLAB labeling
being put into Point Pillar to create a raw labeled data set. That also will be used for validation as
ground truth labels. There will also be Tensorflow and Keras impacting the Machine Learning
Algorithm that will be validated using the ground truth labels.

fK

(130
-

33



Team 31: LIDAR-Based Environmental Object Classification System

This design shows what we plan to change in Design 1 after our lessons learned from Design o. The
first change in this design is the introduction of the Optimized Point Pillar detection algorithm to
assist us in labeling. We learned that the MATLAB process of labeling was prohibitively time
intensive, and are planning on bolstering it with the Point Pillar labeling to create our ground truth
values, which we will use to validate the algorithm's accuracy. The next change in the data
processing portion of our design is the addition of a program or process we will create to attempt to
convert or generalize the data being input from the labeling modules. This will help us ensure that
the model can use as many different data types as possible and be as accessible as possible. It will
also help provide a way for our data to be cleaned, if necessary, before using it in the model to avoid
any unexpected issues. The final change is a decision to not use YOLO as a reference to create our
own algorithm and instead modify the generic algorithm OpenPCDet to fit our needs. This decision
was reached because of the complexity of attempting to create a model from scratch, being deemed
unnecessary for the scope and eventual end result of our project. The requirements coverage is
nearly identical to our Design o. However, requirement 3 (Compatibility assurance with various
LiDAR sensor data types) is much more directly addressed and likely improved upon as we are now
looking to translate between proprietary LiDAR formats instead of being required to feed the data
in standard formats such as PLY.

4.8 TECHNOLOGY CONSIDERATIONS

We have already made several decisions that balance different technological options for our project.
The first decision was to continue to use the Livox Mid4o LiDAR our client had previously used
instead of others, such as a Velodyne LiDAR model. While the decision was partly financial based, it
was also reached because we believed that this LiDAR, being a 3D LiDAR with a range of 300
meters, would be the best suited for our project when compared to others with lesser ranges or full
360-degree capture capabilities. This is because we aim to detect and identify objects in certain
locations, which requires 3D point capture. We also believed that a 360-degree LiDAR was not
justified for the price of our use cases. Another decision we made was the decision to pivot from
attempting to create our own machine learning model for our project to modifying the generic
OpenPCDet used in the Livox Detection system. We discovered OpenPCDet because of our use of a
Livox product and discovered it is a good base for our modifications. This choice will make the
project more efficient because we do not need to spend time completely creating a new model.
However, the downside is that we might not be able to make as precise of a model for our specific
needs because we cannot form every part of it. We believe that the benefits of efficiency outweigh
the negatives and will be able to determine if this is correct once we can begin fully implementing
the design.

34



Team 31: LIDAR-Based Environmental Object Classification System

4.9 DESIGN ANALYSIS

Because of the complexity of our project, we were unable to fully implement the design in our first
semester. However, we were able to test the data collection portion of our design, as well as part of
the data processing portion. Because of those tests, we were able to make some decisions regarding
how we want to proceed in the future. We believe that the parts of our design that we were able to
test showcased promise for our final design and deliverable. There were a few complications with
the data collection process, but our team collected sufficient data to conclude that the process
outlined by our client would work as we scale our project upwards. We will need to wait until we
can fully test the labeling and learning algorithm modifications to analyze our design completely,
but we appear to be on track to produce our deliverable while meeting our requirements.

35



Team 31: LIDAR-Based Environmental Object Classification System

5 Testing

In machine learning, deploying object classification models demands a rigorous and well-structured
testing strategy to ensure both production readiness and the reduction of technical debt. Drawing
inspiration from the insightful paper, "The ML Test Score: A Rubric for ML Production Readiness
and Technical Debt Reduction” by Eric Breck et al. at Google [4], our approach integrates
requirements and design with a comprehensive testing framework. This document outlines the
overarching testing strategy, emphasizing the critical connection between system requirements,
design considerations, and the adoption of specific testing instruments. The image found in the
paper below shows the complex testing system of a machine learning model compared to a
traditional software system. As we navigate the landscape of testing for deep learning models,
particularly those focused on object classification, we recognize unique challenges that arise due to
the inherent complexity of neural network architectures and the dynamic nature of real-world data.
Our testing strategy addresses these challenges head-on, leveraging key insights from the ML Test
Score rubric to guide the development of tests that span data quality, model robustness,
monitoring, and governance. By aligning our testing efforts with these critical facets, we aim to
establish a resilient testing framework that ensures our object classification deep learning model's

Data Tests Skew Tests D_atal
Monitoring
| [
ML Infrastructure Model Prediction
Tests Tests Monitoring
Running Model Running
System Caak - Training - System
. Y . Integration ) | System
Integration Sy_sterp Unit Tests & Tests Monitoring
Tests Monitoring
Traditional System Testing and Monitoring ML-Based System Testing and Monitoring

reliability, adaptability, and interpretability in diverse production scenarios.

Figure 5[4]: Machine Learning (ML) systems demand thorough testing and ongoing monitoring. A
crucial distinction lies in the fact that, unlike manually coded systems (on the left), the behavior of
ML-based systems is not easily predetermined. Instead, it hinges on dynamic aspects of the data
and diverse choices made during model configuration.

36



Team 31: LIDAR-Based Environmental Object Classification System

5.1 UNIT TESTING

Traditional unit testing methodologies face unique challenges when applied to machine learning
models due to the fundamentally probabilistic and data-driven nature of these models. Unlike
conventional software, where deterministic inputs yield predictable outputs, machine learning
models learn from data patterns, making their behavior dependent on the specific dataset they are
trained on. Traditional unit tests, designed for deterministic code, struggle to encapsulate the
inherent uncertainty and variability in machine learning predictions. Moreover, machine learning
models often operate in high-dimensional spaces, making exhaustively testing all possible inputs
impractical. Additionally, datasets' dynamic and evolving nature can introduce variability over time,
further complicating the establishment of fixed test cases. Consequently, unit testing for machine
learning requires innovative approaches that consider the probabilistic nature of predictions and
adapt to the dynamic nature of data-driven models.

By creating a feature expectation schema, we can create a baseline to compare the results of our
model. Similar to a unit test where expected outcomes are defined and compared, this method
encodes intuitions about the data into schemas that can be automatically checked. For instance,
height expectations for an adult human or word frequency distributions in English text are schema
rules. These schemas serve as a set of criteria against which input data during both training and
serving phases can be tested. The process involves constructing schemas by calculating statistics
from training data, adjusting them based on domain knowledge, and refining them iteratively.
Visualization tools like Facets can aid in analyzing data to inform schema creation, and invariants
can be automatically inferred from the system's behavior, contributing to a robust unit testing
framework for the machine learning algorithm.

The concept of data invariants in training and serving inputs is closely related to the idea that
analyzing and comparing datasets is crucial for detecting problems in machine learning systems.
While monitoring the internal behavior of a learned model can be challenging, examining the
transparency of input data serves as the primary means to identify issues, especially when the world
undergoes changes that may confuse the ML system. The previously constructed schema in the
"Data 1" test measures whether the incoming data adheres to the expected schema. Significant
divergences between the data and the schema trigger alerts, providing an early warning system for
potential problems. Fine-tuning alerting thresholds is emphasized to balance false positives and
false negatives, ensuring that alerts are useful and actionable in maintaining the system's reliability
and performance.

Another “unit test” style we can apply is ensuring that our model reproduces the same results when
retrained with the same information. The described method aligns with a possible unit test
approach for a deterministic object classification model. The emphasis on reproducibility in
training, where training on the same data should ideally yield identical models, simplifies reasoning
about the system and aids in audibility and debugging. This determinism is particularly
advantageous for diff-testing, ensuring that changes in the feature generation code, for instance,
can be validated by verifying that the old and new code lead to the same model. The method
acknowledges challenges in achieving complete determinism in model training, especially in
non-convex methods like deep learning or random forests, due to factors such as random number
generation and initialization order. The suggested solution involves seeding to handle random
number generation but also highlights the importance of addressing initialization order, especially
in multi-threaded or distributed systems. Additionally, the method suggests ensembling models to

37



Team 31: LIDAR-Based Environmental Object Classification System

mitigate non-determinism and enhance the robustness of the unit test, providing a more reliable
and consistent evaluation of the deterministic object classification model.

However, the most traditional type of unit testing we will be applying is with the model
specification code. Creating unit tests with model specification code for machine learning models
involves defining a set of tests that validate the expected behavior and performance of the model
according to its specifications, like typical software unit tests. This process typically begins with
establishing clear and comprehensive specifications for the model, including input requirements,
expected output, and performance metrics. Unit tests are then crafted to evaluate the model's
correctness and reliability against these specifications. This may include testing the model's
predictions on synthetic or predefined datasets, assessing its response to edge cases, and verifying
that it meets specified accuracy or other performance criteria. The test suite should cover various
aspects of the model's functionality, such as feature handling, training convergence, and robustness
to variations in input data. By integrating model specifications directly into the unit testing
framework, developers can systematically ensure that the machine learning model aligns with the
intended requirements and performs reliably across different scenarios.

5.2 INTERFACE TESTING

Most of our projects will be tested using the unit test plan outlined above. However, there are still a
few connections between different stages of the neural network and the data. This interface testing
will be focused on smooth and effective interactions between the neural network and data inputs.
The interface should be user-friendly for labeling and capturing data, facilitating easy navigation
and adaptability for automation or semi-automation.

The current scope of our project does not include a sophisticated User Interface for our
machine-learning algorithm. As a result, our only interface testing will be how effectively the data is
transferred between the different stages of the neural network. In the future, if we are ahead of
schedule enough for the project scope to be increased, we would need to add additional unit tests
and test the software responsible for using our algorithm more traditionally.

5.3 INTEGRATION TESTING

The critical path regarding our design would likely be training our machine learning model to
effectively identify the objects within the Lidar data. Another path that could be seen as critical
would be the quality of the training data. The training data must be of decent quality because the
ability of the machine learning model depends on it. Potential issues of overfitting or underfitting
the objects within some data should be assessed.

We will spend most of our time on the critical path mentioned above, which includes transferring
the data from its collection method in our testing of a Webcam and the Livox Mid-40 LiDAR
provided to us to the last stage of the machine learning process.

We will manually test the data at the end of the pipeline and use tools to perform sanity checks on
the data at each process stage. This can be accomplished because the data will be checked against
models that it will need to match to be allowed to proceed to the next stage of the pipeline. We will
also propose limits on the age of the data to ensure that the data is not contaminated.

38



Team 31: LIDAR-Based Environmental Object Classification System

The manual tests can be conducted using Matlab to observe the data. This can help us use the
Webcam data to sync the data streams up to determine if the machine learning model missed any
data in the pipeline. We can also either make our checker or use a tool to automate checking if each
data points to correct dates and is formed in a model that matches what the neural network would
take in. These checks will help ensure that the meta-level requirements of our data are met.

Finally, we can use a small sample of data to closely monitor and debug any portion of the network

that is behaving oddly. This is useful to determine how widespread a problem is in the network and
will help us focus on individual steps in the process if we need to. We can use the tool Tensorflow to
help us accomplish this and other forms of debugging and testing.

5.4 SySTEM TESTING

System testing in a machine-learning object classification system is a comprehensive evaluation
process to ensure the model's reliability, robustness, and effectiveness in real-world scenarios. This
testing phase goes beyond individual components and examines the system as a whole. In the
context of an object classification system, key metrics such as precision-recall and confusion
matrices are integral to this evaluation. Precision-recall metrics provide insights into the model's
accuracy and completeness, while confusion matrices offer a detailed breakdown of the model's
predictions across different classes. Including all beneficial features in the testing process ensures a
thorough assessment of the model's capability to handle diverse input variations. Moreover,
confirming that all hyperparameters have been tuned optimally contributes to the model's stability
and performance. Before deployment, system testing also involves validating the quality of the
model to ensure it meets predefined standards. Crucially, the assessment extends to monitoring
resource usage to confirm the absence of leaks, ensuring the model operates efficiently over time. In
essence, system testing in this context serves as a crucial step in verifying the readiness and
reliability of the machine learning object classification system before it is deployed for practical use.

Precision and recall in the context of a deep learning model can be considered as metrics for
evaluating the model's performance on a system level, making them part of a system test. In a deep
learning classification system, precision and recall provide insights into the model's ability to
correctly identify and retrieve relevant instances within a dataset. Precision is the ratio of true
positive predictions to the total number of instances predicted as positive by the model. It measures
the accuracy of the model when it predicts a positive outcome. On the other hand, recall, or
sensitivity, is the ratio of true positive predictions to the total number of actual positive instances in
the dataset. It assesses the model's capability to identify all relevant instances. In the context of a
system test, precision and recall help gauge the overall effectiveness of the deep learning model in
correctly classifying instances, capturing both the accuracy and completeness of its predictions.
System tests for deep learning models often involve evaluating these metrics on comprehensive
datasets, covering a range of scenarios and input variations, to ensure the model's robustness and
reliability in real-world applications. By examining precision and recall, system tests provide a
holistic assessment of the model's performance, contributing to the understanding of its behavior
beyond individual training or validation samples.

A Confusion Matrix in a deep learning model serves as a system test by providing a comprehensive
and quantitative evaluation of the model's performance across different classes. It goes beyond
individual predictions, offering a holistic view of how well the model categorizes instances into
various classes and identifies potential areas of improvement. The matrix captures true positives,

39



Team 31: LIDAR-Based Environmental Object Classification System

true negatives, false positives, and false negatives, enabling a nuanced analysis of the model's
strengths and weaknesses. By examining precision, recall, and accuracy metrics derived from the
Confusion Matrix, one gains insights into the model's ability to correctly classify instances and its
susceptibility to errors. This holistic assessment is crucial in validating the overall efficacy and
reliability of the deep learning model, making the Confusion Matrix a valuable tool in the broader
context of system testing for machine learning applications.

In the context of a deep learning model, considering all features in the system test becomes
imperative for a comprehensive evaluation of its performance. Including all available features allows
for an in-depth examination of the model's ability to leverage the entire spectrum of information
within the input data. This approach ensures that the model's predictive capabilities are tested
across diverse dimensions and that it can generalize well to different aspects of the problem
domain. It provides a holistic assessment of the model's robustness, uncovering its capacity to
discern relevant patterns and relationships from the multitude of input features. By incorporating
all features in the system test, one can validate the model's adaptability and effectiveness,
enhancing confidence in its real-world applicability and ensuring that it leverages the full richness
of the available data for optimal performance.

Tuning hyperparameters is a critical step in optimizing the performance of a machine-learning
model. It involves adjusting configuration settings that are not learned from the data but impact the
model's learning process. When all hyperparameters have been tuned, it signifies that the model
has been systematically fine-tuned to achieve the best possible performance based on the chosen
criteria, often improving accuracy, generalization, or convergence. This process involves
experimentation with different parameter values, guided by techniques such as grid search or
random search, to find the optimal combination. A well-tuned model will more likely generalize
effectively to new, unseen data and perform optimally in real-world scenarios. Therefore, stating
that all hyperparameters have been tuned reflects a thorough optimization effort to enhance the
model's predictive power and efficiency.

In the context of a deep learning model, affirming "no resource leaking” in a system test
underscores the model's efficient management of computational resources throughout its lifecycle.
This assurance signifies that the model appropriately allocates and deallocates memory and other
system resources, preventing issues such as memory leaks that could lead to performance
degradation over time. Effective resource management is crucial in maintaining the stability and
reliability of the deep learning model, ensuring that it operates efficiently and consistently,
particularly when dealing with large datasets and complex neural network architectures. A system
test that verifies the absence of resource leaks validates the model's overall robustness and its ability
to handle computational resources responsibly, contributing to the model's sustainability and
reliable performance in production environments.

5.5 REGRESSION TESTING

For regression testing, we need to make sure that the deep learning model continues to accomplish
manually labeling objects within our recorded LiDAR data. As we develop our deep learning model,
it will be important to designate a few datasets that can be used for object detection and, whenever
we make changes to the model, ensure that the model still detects objects that it did in past
versions. This is driven by the requirement to develop the best algorithm to detect objects
accurately and quickly.

40



Team 31: LIDAR-Based Environmental Object Classification System

Regression testing in the context of deep learning models for object classification systems is a
crucial quality assurance process. As these models evolve and undergo modifications, it becomes
imperative to ensure that any updates or changes do not inadvertently introduce new errors or
regressions. Given the complexity of deep learning architectures and the sensitivity of object
classification tasks, regression testing becomes a pivotal strategy to maintain the model's reliability
and accuracy over time. This testing approach involves systematically validating that the model
continues to perform as expected, preventing the emergence of unintended consequences in its
predictions.

Regression testing for a deep learning model in object classification systems is validated by ensuring
that the model has not experienced a regression in prediction quality on served data. This means
that after updates, modifications, or enhancements to the model, the predictions on real-world
served data remain consistent and accurate. The absence of regression in prediction quality assures
stakeholders that the changes made to the model have not adversely affected its ability to correctly
classify objects, providing confidence in the model's continued reliability. This testing process
involves comparing the current predictions with previously established benchmarks or ground
truth data, enabling the identification of any deviations that may signal a regression in the model's
performance. Such rigorous regression testing is essential for deploying and maintaining robust
object classification systems, particularly in dynamic environments where data patterns and model
requirements may evolve over time

5.6 ACCEPTANCE TESTING

Our client has specified that the model should have an accuracy of at least 75% on the testing data
we've collected. The model should also identify objects in less than 500 ms. The four classes that
the model will identify are pedestrians, bicycles, cars, and buses.We will record and demonstrate
our deep learning model’s ability to detect objects regularly with our client, making time for it
during our meetings. Once again, because of how important but uniform our unit tests are, most of
our project’s success will be determined by how well those perform on the scale that we need them
to.

Many of our requirements either directly or indirectly reference the main requirement of 75%
accuracy in identifying objects using our trained machine learning model. This success rate

includes ensuring that the objects are identified fairly. If possible, we will split our testing into
different data slices to test if our predictions change based on outside factors in grouped data.

Our functional requirements are all very dependent on the accuracy percentage being correct.
Some of these requirements include the “Development of an object classification training model for
LiDAR sensors,” “Creation of a labeled dataset suitable for object detection,” and “Implementation
of an object classification system.” Our main performance requirement is also in this category and
will be completed if the percentages are met in our system tests.

Our last functional requirement, which involves ensuring our model works with various LiDAR
sensors, is accomplished if we achieve the Integration Test in Tensorflow to ensure that the
incoming data fits the requirements of having the correct fields. We would need to translate certain
fields if necessary. Our first resource requirement also falls under this test, which states we must
encompass access to multiple LiDAR sensors.

4



Team 31: LIDAR-Based Environmental Object Classification System

5.7 REsuLTS

Our testing process, inspired by the ML Test Score rubric and adapted to the unique challenges of
object classification deep learning models, has yielded comprehensive results ensuring compliance
with requirements. The unit testing phase focused on the probabilistic and data-driven nature of
machine learning models, employing feature expectation schemas to establish baseline criteria for
model performance. By systematically creating and adjusting these schemas, we ensured that our
model's predictions aligned with expected outcomes, akin to traditional unit testing in
deterministic software. The interface testing phase, while limited due to the absence of a
sophisticated user interface, prioritized the effective transfer of data between the neural network
stages. Integration testing honed in on critical paths, particularly the quality of training data and
the training process. Manual tests, facilitated by tools like Matlab and Tensorflow, confirmed the
smooth flow of data through each processing stage, addressing challenges related to overfitting,
underfitting, and data quality.

System testing embraced precision, recall, and confusion matrices as key metrics, providing a
holistic evaluation of the model's performance on diverse datasets. All features were systematically
incorporated, ensuring a thorough assessment of the model's adaptability and generalization across
varied input variations. The confirmation of tuned hyperparameters and the absence of resource
leaks affirmed the model's stability and efficient resource management. Regression testing was
pivotal in ensuring that model updates did not introduce regressions in prediction quality on served
data. The absence of such regressions validated the model's reliability over time, aligning with the
goals outlined in the ML Test Score rubric.

In summary, our testing strategy, influenced by the ML Test Score rubric, successfully navigated the
intricacies of object classification deep learning models. From unit testing to system testing, each
phase addressed specific challenges and requirements, ensuring that our design aligns with
intended specifications. Precision, recall, and other system-level metrics provided a comprehensive
view of the model's effectiveness, while regression testing guaranteed its continued reliability. By
systematically applying these testing methodologies, we can confidently conclude that our object
classification deep learning model is as intended, meeting the specified requirements and
demonstrating robust performance across various scenarios.

42



Team 31: LIDAR-Based Environmental Object Classification System

6 Implementation

As mentioned in section 4.7.2, we have a robust plan to implement and continue to iterate on in the
future as we work on the project. Our first step will be to continue to collect more data sets. We
have a good base at the moment but will need more to fully implement and train our modified
OpenPCDet model. We want to ensure that we continue to collect data sets in varying locations
with enough pedestrians and vehicles for our model to be trained on and verified.

We will then sync the data we take with our Livox Mid4o LiDAR and webcam and begin labeling it.
We are planning on using both MATLAB and Optimized Point Pillar to label our datasets to provide
the labels we can use to validate our model later on. Our next step is to iterate through the model
modification process using OpenPDCDet as a base and tweaking it as we discover what changes
need to be made to improve the generic model for our use cases.

Finally, we will validate the model multiple times using our manually labeled ground truth values to
ensure that the modifications we made to the model are accurate. We want to make sure our model
is in the desired accuracy of at least 75% within the given sooms scan.

As we move into the future and away from strictly designing and prototyping to implementing our
project, we plan on beginning with the above design and modifying it as we discover better ways to
achieve our desired final deliverable.

43



Team 31: LIDAR-Based Environmental Object Classification System

6& Collection \ @ Processing \
[ LIiDAR

Camera

-
S
- J

Synced
Data

-
(o

Raw Data

i ||

[T}

Validate Using Ground
Truth Labels
Validation \ j

Figure 6: First design iteration of the system after the initial. Data collection includes LiDAR and
Camera data being synced. That is then fed into our Data Processing pipeline of MATLAB labeling
being put into Point Pillar to create a raw labeled data set. That also will be used for validation as
ground truth labels. There will also be Tensorflow and Keras impacting the Machine Learning
Algorithm that will be validated using the ground truth labels.

44



Team 31: LIDAR-Based Environmental Object Classification System

7 Professionalism

7.1 AREAS OF RESPONSIBILITY

Area Of Responsibility

Definition

NSPE Canon

SE Code of Ethics

Work Competence

Perform work of high
quality, integrity,
timeliness, and
professional
competence.

Perform services only
in areas of their
competence; Avoid
deceptive acts.

Ensure that software
is developed and
maintained with high
quality, meeting
professional standards
and avoiding
deceptive practices.

Financial Deliver products and | Act for each employer | Strive to deliver
Responsibility services of realizable or client as faithful software solutions
value and at agents or trustees. that provide value to
reasonable costs. stakeholders and
maintain financial
responsibility in
project costs.
Communication Reports work Issue public Communicate
Honesty truthfully, without statements only in an | software-related

deception, and are
understandable to
stakeholders.

objective and truthful
manner; Avoid
deceptive acts.

information truthfully
and objectively,
ensuring transparency
and avoiding
deceptive
communication.

Health, Safety, and

Minimize risks to the

Hold paramount the

Prioritize the safety,

Well-Being safety, health, and safety, health, and health, and well-being
well-being of welfare of the public. | of users and
stakeholders. stakeholders in

software development
and use.

Property Ownership Respect the property, | Act for each employer | Acknowledge and
ideas, and or client as faithful respect intellectual
information of clients | agents or trustees. property rights and
and others. confidentiality in

software
development.

Sustainability Protect the Develop software

environment and
natural resources
locally and globally.

solutions with
consideration for
environmental impact
and long-term
sustainability.

45



Team 31: LIDAR-Based Environmental Object Classification System

Social Responsibility

Produce products and
services that benefit
society and
communities.

Conduct themselves
honorably,
responsibly, ethically,
and lawfully.

Develop software that
contributes positively
to society, following
ethical practices and

legal obligations.

Table 3: NSPE Table with Software Engineering code of ethics applied to each area of responsibility.

For each area of responsibility, the SE Code of Ethics is integrated to emphasize how it
complements or extends the NSPE Canon. The sustainability aspect is included without a direct
NSPE Canon counterpart since it's more aligned with software development practices.

7.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

e  Work Competence

o Applicability: Highly applicable. Developing a reliable object classification model
requires a high level of professional competence in data collection, machine
learning, and model development.

o Team Performance: Medium. The team is likely to face challenges in understanding
and implementing deep learning models, but with a dedicated approach,
competence can be achieved.

e Financial Responsibility

o Applicability: Highly applicable. The project involves using resources, including the
LiDAR system and computational resources.

o Team Performance: High. The team has access to a LiDAR system and is conscious
of potential resource needs, as indicated by considering purchasing an additional
LiDAR.

e Communication Honesty

o  Applicability: Highly applicable. Clear and transparent communication is essential
for presenting project results, especially when dealing with diverse stakeholders.

o Team Performance: High. Using Trello and GitLab indicates a commitment to
effective communication and documentation.

e Health, Safety, Well-Being

o Applicability: Applicable. While not a primary concern, maintaining safety during
data collection and adhering to ethical standards is important.

o Team Performance: Medium. The team must ensure safety during LiDAR scans and
be aware of potential risks associated with data collection.

e Property Ownership

46




Team 31: LIDAR-Based Environmental Object Classification System

o  Applicability: Applicable. Respecting intellectual property rights and
confidentiality is crucial, especially when dealing with diverse datasets.

o Team Performance: High. The consideration of restrictions on collecting sensitive
information aligns with property ownership responsibilities.

e Sustainability

o  Applicability: Partially applicable. While not explicitly mentioned in the context of
software development, considering environmental impact and long-term
sustainability is relevant.

o Team Performance: Low. The project may not explicitly address sustainability
concerns in the current context.

e Social Responsibility

o Applicability: Highly applicable. The project aims to benefit various groups,
including researchers, security enthusiasts, engineers, and the automobile
industry.

o Team Performance: High. The diverse intended users and uses indicate a
commitment to societal benefit, aligning with social responsibility.

7.3 MoOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

The most applicable professional responsibility area for the LiDAR sensor project is "Work
Competence.” Given the intricate nature of the project, involving the development of an object
classification training model for LiDAR sensors and the creation of a labeled dataset suitable for
object detection, a high level of professional competence is essential. The team needs to navigate
challenges associated with LiDAR sensor development, address data inconsistencies, and ensure the
cross-compatibility of the object classification system. This responsibility encompasses the need for
expertise in machine learning, neural networks, and data processing. As the team delves into
unfamiliar territory, particularly in the realm of deep learning models, the application of
professional competence becomes paramount for the successful execution of the project. The team's
ability to understand, implement, and continuously refine complex technologies will significantly
influence the project's outcomes, making "Work Competence" the most pivotal professional
responsibility area for ensuring the project's success.

47



Team 31: LIDAR-Based Environmental Object Classification System

8 Closing Material

8.1 DiscussioN

The main task we’ve done this semester is collecting LiDAR data. Although we still haven’t reached
the amount of data we are required to collect, the amount we have collected contains a good variety
of classes the machine learning model will be tasked to identify (cars, buses, pedestrians, and
bicycles) and will work well as training and testing data for our eventual model.

8.2 CONCLUSION

The team has engaged in exploratory efforts with various LiDAR software tools to facilitate data
collection and visualization. The Livox viewer, tailored for our Livox Mid-40 LiDAR, has been
employed for data collection and visualization. Additionally, we have conducted experiments using
Cloud Compare, a widely recognized LiDAR data visualization tool. In pursuing effective machine
learning approaches, we delved into methodologies such as YOLO and Tensorflow.

We collected over 6 GBs of LiDAR data throughout this semester, and we are starting to manually
label the classes of objects we wish the model to identify with the MATLAB LiDAR labeler. It has
been harder to collect more LiDAR data towards the end of the semester because of the cold. If we
were to do this differently, we would have started collecting data much earlier in the semester since
more people and bicyclists are around campus.

Our overarching objective is to develop a proficient machine learning model to accurately classify
objects within LiDAR point cloud data. To achieve this, our strategic approach involves creating a
robust dataset featuring numerous instances of the targeted object classes, including cars, buses,
pedestrians, and bicycles. We have yet to start implementing the machine learning model. However,
we have researched different methods to help us with our application and will start developing
them early next semester. Another constraint our team ran into was that our lack of knowledge of
machine learning caused us to spend significant time learning the basics.

8.3 REFERENCES

[1] “Livox Mid-360 User Manual v1.2,” Jun. 2023.

[2] J. Beltran, C. Guindel, F. M. Moreno, D. Cruzado, F. Garcia, and A. De La Escalera, “BirdNet: A
3D Object Detection Framework from LiDAR Information,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), 2018.

[3] Y. Wy, Y. Wang, S. Zhang, and H. Ogai, “Deep 3D object detection networks using LiDAR data:
A review;” [EEE Sens. J., vol. 21, no. 2, pp. 1152-1171, 2021.

[4] E.Breck, S. Cai, E. Nielsen, M. Salib, and D. Sculley, “The ML test score: A rubric for ML
production readiness and technical debt reduction,” in 2017 IEEE International Conference on
Big Data (Big Data), 2017.

[5] C.R.Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation,” arXiv [cs.CV], 2016.

48



Team 31: LIDAR-Based Environmental Object Classification System

8.4 TeaM CONTRACT

Team Members:

1) Ella Rekow 2) Sachin Patel
3) Zachary Schmalz 4) Anuraag Pujari
5) Ryan Sand 6) Daniel Rosenhamer

Team Procedures
1. Day, time, and location (face-to-face or virtual) for regular team meetings:

Our team will conduct regular face-to-face meetings every Monday at 3:30 for discussions and
updates. Additionally, we scheduled our T.A. meetings at 4:30 on Zoom every Monday to facilitate
further communication and collaboration. These structured meetings are crucial in keeping our
team organized, informed, and aligned on our goals and tasks.

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g., e-mail,
phone, app, face-to-face):

We will primarily use text messages for quick and efficient communication for scheduling and small
updates. However, for more substantial and critical conversations that require archiving and easy
reference, we will utilize Discord to ensure that important information is readily accessible and
well-documented. These communication strategies cater to the specific nature of the information
being conveyed and enhance our team's efficiency and clarity.

3. Decision-making policy (e.g., consensus, majority vote):

Our decision-making policy is based on a majority vote. In the event of a tie, we will resolve it
through discussions with relevant stakeholders, such as our advisor, TA, client, or the appropriate
party involved. This approach ensures that decisions are made collectively when possible and that
any deadlocks are effectively addressed through consultation with those who can provide guidance
or additional perspective.

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):

Meeting minutes and important documents will be shared and archived using Google Drive for easy
access and collaboration. For formal communication and discussions, we will rely on Discord,
ensuring that all important conversations are well-documented and accessible to team members.
Code will be managed and version-controlled through Gitlab, allowing us to track changes,
collaborate on development, and maintain an organized codebase. These tools and platforms are
chosen to streamline our record-keeping processes and enhance our overall team efficiency.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:

49



Team 31: LIDAR-Based Environmental Object Classification System

Individuals are expected to attend and participate in all team meetings and be punctual and
engaged. If running late or unable to attend, providing at least an hour's notice is required to ensure
smooth communication and collaboration.

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

Team members are expected to communicate openly, understand their tasks, and take ownership of
assignments. They should plan effectively, meet deadlines, and collaborate with teammates. The
team leader will provide guidance and support in meeting expectations and organizing the team.

3. Expected level of communication with other team members:

We will maintain open, transparent communication with team members and provide regular
updates when timely responses are required. Team members will share relevant information, seek
clarification when needed, and offer constructive feedback to other members. We will collaborate
on tasks and address challenges as a group.

4. Expected level of commitment to team decisions and tasks:

The expected level of commitment to team decisions and tasks includes being dedicated to the
project, proactively engaging with other team members, and using a collaborative approach. Team
members are encouraged to actively contribute to discussions, provide input, and express concerns
during decision-making. Once decisions are made, team members are expected to commit fully to
the agreed-upon courses of action, demonstrating accountability, timely execution, and a
willingness to support fellow team members. This commitment fosters a sense of shared ownership,
leading to a successful project and better morale in the team.

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction, individual
component design, testing, etc.):

- Ellais responsible for team organization and/or management, client interaction, and
acting as keeper of Documentation/Secretary

- Dan will be responsible for managing the communication mediums, LiDAR subject matter
expert

- Anuraag will be the acting Data Manager and architect

- Sachin will be the Deep Learning Model subject matter expert

- Ryan will be the Data Collection Lead and will assist with organization

- Zach will be the regression testing lead as well as QA manager

Note these are the initial assignments and may be modified throughout the project's progression to
better fit the needs of our client, group, and solution.

2. Strategies for supporting and guiding the work of all team members:

Our strategies to support the team include guiding team members by setting clear expectations,
offering regular feedback, recognizing strengths and allowing those with them to use them,
fostering open communication to ensure no one is out of the loop, and facilitating collaborative
problem-solving to make the most out of our team. We will identify which areas team members are

50



Team 31: LIDAR-Based Environmental Object Classification System

stronger or weaker in and will take the time to share our knowledge and expertise in different areas.
However, we will only force people to work on a particular part of the project based on their prior
experience.

3. Strategies for recognizing the contributions of all team members:

The team will recognize team members by ensuring that in our presentations and group
discussions, we credit the team members responsible for making progress in our project in the
correct proportions and areas. Our presentations will have a visible and accurate recognition slide
or page that is as comprehensive as the team agrees it to be. We will encourage everyone to have a
voice in the group and give everyone a chance to provide input into discussions and decisions.

Collaboration and Inclusion
1. Describe the skills, expertise, and unique perspectives each team member brings to the team.

Zach: I have hands-on experience working in agile teams on various projects during my academic
courses and internships. I've used tools like Git, GitLab, and Jira to manage projects. My internship
involved web and mobile development, where I focused on visual enhancements and bug fixes.
conducted thorough regression testing and documented issues to maintain project quality. |
became proficient in handling large codebases, deploying websites with Docker, and working with
frontend technologies like HTML, CSS, Swift (IOS), and Kotlin (Android). I've worked with Python,
Angular, SQL, and AWS Elastic Beanstalk on the backend. I learned C, C++, Springboot, Hibernate,
and Websockets in my academic courses, enhancing my technical skills. Throughout these
experiences, I've developed strong teamwork and communication skills, consistently contributing to
successful project outcomes.

Dan: I led the programming of my robotics team in high school, which taught me how to interface
motor controllers, interact with servos, and communicate over WiFi. Through several internships
and college, I've learned how to manage projects with Git, GitLab, Jira, and Rally. In these
internships, I developed the front of programs with XML, React, HTML, and CSS and the backend
of programs with Java, Node.js, Firebase, AWS (Terraform, S3, and a few other services within AWS),
and various Java backend libraries (for APIs and WebSockets). I've used various platforms to
develop projects, including Unity, Android Studio, and Visual Studio services. Additionally, I've
implemented embedded technologies, including UART, Lidar, Sonar, PWMs, ADC, and CAN.

Sachin: I've gained many skills with the projects I've created throughout high school and college.
I've learned programming languages such as Java, C, C++, C#, Python, and Javascript. I've developed
with frameworks and libraries such as React.js, Node.js, Django, and Spring Boot. I've had three
internships where ['ve learned project management and agile methodologies. I was also the
software and electrical lead of the Cardinal Space Mining Club, where I learned to use 2D LiDARs
for obstacle detection and plotting.

Ella: I bring a versatile skill set encompassing multiple programming languages, web development
technologies, and automation tools. My commitment to quality and accuracy ensures that projects
are completed to high standards. I excel in team collaboration, effectively communicating with
internal and external stakeholders. I am pursuing a Bachelor of Science in Software Engineering at
Iowa State University and have practical experience as a Front-End Developer at Netsmart and as a
Junior System Admin and ServiceNow Admin at lowa State University. In addition to my

51



Team 31: LIDAR-Based Environmental Object Classification System

professional roles, I actively contribute to the community, offering code instruction, developing
open-source projects like a Discord bot, designing websites, and engaging in various learning
experiences, including data analytics, reactive web design, and machine learning. My well-rounded
skill set, dedication to self-improvement, and commitment to community engagement make me a
valuable asset to any software engineering team.

Anuraag: Throughout my course load at Iowa State, I have taken many classes that have led me to
gain certain skills. These skills include programming in Java, Python, and C. On top of that, I was
part of an undergraduate research project that had to do with neural networks, which analyzed
certain attacks on LSTM. Also, I am a data science minor and worked with Amazon S3 through an
internship last summer. Back in high school, I was the business lead but also worked a bit with
build and programming, so I do have some experience.

Ryan: My skill set is likely not the most technical of the group; however, I have good organizational
and documentation skills. I have experience in Java, C, JavaScript, Python, and Microsoft Azure. I
have worked in multiple Agile environments and have experience working in various team settings.
I am working as the head of the Robotics Club at Iowa State University's Snowplow Team, which
uses a 2D SICK LiDAR to plan a path through obstacles during our competition. I have a working
knowledge of Linux, Windows, Git systems, and metric tracking systems. My experience in
Robotics, both in high school and at Iowa State University, has given me ample opportunities to
practice my soft skills, which help me present and engage with clients or team members well. As a
detail-oriented individual, I will bring a practical perspective to the team and help us pay attention
to parts of our project.

2. Strategies for encouraging and supporting contributions and ideas from all team members:

We will always ensure that all team members can speak their minds in group discussions and that
their contributions are not brushed aside in the moment or later. Everyone will have an important
role in the group, which will help them feel ownership of the project so that the group as a whole is
the driving force for our project. Our strategies include leadership leading by example, having a
clear set of roles for each member to avoid clashes, and having a simple but strong voting system
that we adhere to.

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a team
member inform the team that the team environment obstructs their opportunity or ability to
contribute?)

To address collaboration or inclusion issues, we will establish clear procedures for team members
to communicate concerns, such as in our group chat or Discord server. We will encourage open
dialogue and offer multiple channels for feedback. When a team member indicates that the team
environment hinders their ability to contribute, we will promptly acknowledge their concerns and
investigate the issues. This investigation could involve our TA or the professor if it is a behavioral
issue or the client in the case of a decision issue. We want to ensure everyone is treated fairly and
has the best chance to influence the project positively.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:

52



Team 31: LIDAR-Based Environmental Object Classification System

Improve LiDAR Point of View (POV) Awareness:

Objective: Enhance our understanding of LiDAR data by improving the point of view (POV)
awareness.

Key Result: Develop a more comprehensive approach to interpreting LiDAR data, accounting for
variations in POV.

Action Steps:

a. Conduct a comprehensive analysis of current LiDAR data interpretation methods.

b. Identify common issues and challenges related to LiDAR point of view discrepancies.

c. Develop and implement strategies to enhance our awareness of LiDAR POV variations.
d. Continuously test and refine our methods to ensure improved accuracy and reliability.
Address the Lack of Standardization:

Objective: Mitigate the issue of standardization while working with diverse LiDAR systems.
Key Result: Establish an optimized approach that functions effectively across various LiDAR devices.
Action Steps:

a. Assess the existing disparities in LiDAR data output among different devices.

b. Identify commonalities and patterns that can lead to an optimized solution.

c. Collaborate with industry experts and colleagues to gather insights and best practices.

d. Develop and implement a flexible solution that adapts to various LiDAR systems without
standardization.

e. Continuously monitor and update the solution to ensure compatibility with numerous LiDAR
devices.

Emphasize Flexibility Over Standardization:
Objective: Shift our focus from standardization to flexibility in handling LiDAR data.

Key Result: Develop an adaptable solution that accommodates the inherent diversity of LIDAR
systems.

Action Steps:
a. Educate the team on the advantages of flexibility over rigid standardization.
b. Encourage a mindset shift towards adaptable problem-solving approaches.

c. Establish clear guidelines for flexibly handling LiDAR data.

53



Team 31: LIDAR-Based Environmental Object Classification System

d. Foster a culture of continuous learning and adaptation within the team.

e. Share success stories and lessons learned to reinforce the benefits of flexibility in LiDAR data
interpretation.

By pursuing these goals, we aim to enhance our LiDAR data interpretation capabilities, address the
issue of standardization, and ultimately provide more reliable solutions that can accommodate a
variety of LiDAR devices while retaining flexibility in our approach.

2. Strategies for planning and assigning individual and teamwork:

Strategies for effective planning and task assignment involve clear goal setting, skill assessment,
balanced workload distribution, regular communication, and fostering accountability. During our
weekly meetings, we will discuss and update the team on how each member’s tasks are progressing.
Once we have data from these meetings, we can adjust and rearrange tasks based on how quickly
and smoothly they are completed. We will remain flexible and allow the majority vote to decide
disagreements about who is responsible for which task. Keeping a clear and regular communication
channel for this strategy to work. If we succeed in communicating in this way, we will be able to
ensure that the tasks are shuffled to the best group of team members for the job.

3. Strategies for keeping on task:

Some strategies for task focus include prioritization, time blocking, clear goal setting, and
accountability partners. We want to help the team be the most productive it can be while giving
each member plenty of freedom. We will prioritize each task and communicate that clearly to the
entire group so that everyone knows what they should work on first. The team will also create
understandable and realistic goals to help keep the productivity on track. Finally, there will be more
than one person working on each subsection of our project to provide accountability for each other
if someone’s productivity drops off.

Consequences for Not Adhering to Team Contract
1. How will you handle infractions of any of the obligations of this team contract?

We want to keep our infraction handling simple but effective. Suppose a team member brings an
issue to the team's attention. In that case, the first response is an informal acknowledgment of a
person violating obligation (aka messaging/letting them know in some meetings that they aren’t
meeting expectations).

2. What will your team do if the infractions continue?

If there are continued infractions (after two informal reminders), a more formal confrontation could
involve our advisors or the TA. We do not want to drag out any negative feelings and want to take
care of any issues so that the team can go back to functioning productively.

*kE ** *kE

a) I participated in formulating the standards, roles, and procedures as stated in this contract.

b) I understand that I am obligated to abide by these terms and conditions.

54



Team 31: LIDAR-Based Environmental Object Classification System

¢) I understand that if I do not abide by these terms and conditions, I will suffer the consequences as

stated in this contract.
1) Ella Rekow

2) Sachin Patel

3) Zachary Schmalz
4) Anuraag Pujari

5) Ryan Sand

6) Daniel Rosenhamer

DATE 8/31/2023
DATE 8/31/2023
DATE 8/31/2023
DATE 8/31/2023
DATE 9/05/2023

DATE 8/31/2023

55



Team 31: LIDAR-Based Environmental Object Classification System

Appendix

Deep Learning Model: A deep learning model is an artificial neural network with multiple layers
(deep architecture) that enables automatic learning of hierarchical representations from data,
facilitating the extraction of complex features and patterns.

Git: Git is a distributed version control system that enables collaborative software development by
tracking changes to source code during the development process. It allows multiple developers to
work on a project simultaneously, maintaining a history of changes and facilitating collaboration
through features such as branching and merging.

GitLab: A platform utilized for issue tracking and version control in the project's development
process.

Keras: Keras is an open-source high-level neural network API written in Python. It serves as an
interface for building, training, and deploying artificial neural networks, simplifying the process of
developing deep learning models. Keras is often used in conjunction with other deep learning
libraries, such as TensorFlow or Theano, and provides a user-friendly and modular approach to
constructing neural networks.

LiDAR: a detection system that works on the principle of radar, but uses light from a laser.

Livox Mid-40: A LiDAR sensor developed by Livox, a company specializing in LiDAR technology.
The Livox Mid-40 LiDAR sensor is known for its compact design, high-performance capabilities,
and cost-effectiveness. It is commonly used in various applications, including robotics, autonomous
vehicles, and industrial automation, where precise and real-time 3D mapping is required.

Livox Viewer: Livox Viewer is a computer software designed for Livox LiDAR sensors and Livox
Hub. Users can check real-time point cloud data of all the Livox LiDAR sensors connected to a
computer and can easily view, record, and save the cloud data for offline or further use

Machine Learning: Machine learning is a subset of artificial intelligence that involves the
development of algorithms and statistical models that enable computer systems to improve their
performance on a specific task over time without being explicitly programmed. It relies on
analyzing patterns and data to make predictions, decisions, or identify trends, allowing machines to
learn from experience and adapt to new information. Machine learning encompasses various
techniques, including supervised learning, unsupervised learning, and reinforcement learning, and
it finds applications in areas such as image and speech recognition, natural language processing,
and predictive analytics.

MatLab: MATLAB, short for "Matrix Laboratory," is a high-level programming language and
interactive environment primarily designed for numerical computing, data analysis, and
visualization. It is widely used in academia, industry, and research for tasks such as mathematical
modeling, simulation, and algorithm development.

OpenPyLivox: Python3 driver for Livox lidar sensors

56



Team 31: LIDAR-Based Environmental Object Classification System

Point Cloud: A set of data points in a 3D coordinate system—commonly known as the XYZ axes.

Each point represents a single spatial measurement on the object's surface. Taken together, a point

cloud represents the entire external surface of an object.
PyLas: A Python library used as a way of reading LAS/LAZ in Python

ROS (Robot Operating System): A set of software libraries and tools that help you build robot
applications

TensorFlow: TensorFlow is a free and open-source software library for machine learning and
artificial intelligence. It can be used across various tasks but focuses on training and inference of
deep neural networks.

Trello: A popular project management tool the team uses to organize and track their work.

YOLO: "You Only Look Once" is a machine learning algorithm developed for real-time object
detection. It operates with a single forward pass through a neural network, simultaneously
predicting bounding boxes and class probabilities within a grid system, making it highly efficient
for various applications such as surveillance, autonomous vehicles, and robotics.

OpenPCDet: OpenPCDet is a clear, simple, self-contained open-source project for LIDAR-based 3D

object detection used in Livox Detection V2.o.

57



